Metamath Proof Explorer


Theorem ipssca

Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
Assertion ipssca S V S = Scalar A

Proof

Step Hyp Ref Expression
1 ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
2 1 ipsstr A Struct 1 8
3 scaid Scalar = Slot Scalar ndx
4 snsstp1 Scalar ndx S Scalar ndx S ndx · ˙ 𝑖 ndx I
5 ssun2 Scalar ndx S ndx · ˙ 𝑖 ndx I Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
6 5 1 sseqtrri Scalar ndx S ndx · ˙ 𝑖 ndx I A
7 4 6 sstri Scalar ndx S A
8 2 3 7 strfv S V S = Scalar A