Metamath Proof Explorer


Theorem ipsstr

Description: Lemma to shorten proofs of ipsbase through ipsvsca . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
Assertion ipsstr A Struct 1 8

Proof

Step Hyp Ref Expression
1 ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
2 eqid Base ndx B + ndx + ˙ ndx × ˙ = Base ndx B + ndx + ˙ ndx × ˙
3 2 rngstr Base ndx B + ndx + ˙ ndx × ˙ Struct 1 3
4 5nn 5
5 scandx Scalar ndx = 5
6 5lt6 5 < 6
7 6nn 6
8 vscandx ndx = 6
9 6lt8 6 < 8
10 8nn 8
11 ipndx 𝑖 ndx = 8
12 4 5 6 7 8 9 10 11 strle3 Scalar ndx S ndx · ˙ 𝑖 ndx I Struct 5 8
13 3lt5 3 < 5
14 3 12 13 strleun Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I Struct 1 8
15 1 14 eqbrtri A Struct 1 8