Metamath Proof Explorer


Theorem ipsubdi

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipsubdir.m - ˙ = - W
ipsubdir.s S = - F
Assertion ipsubdi W PreHil A V B V C V A , ˙ B - ˙ C = A , ˙ B S A , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipsubdir.m - ˙ = - W
5 ipsubdir.s S = - F
6 simpl W PreHil A V B V C V W PreHil
7 simpr1 W PreHil A V B V C V A V
8 phllmod W PreHil W LMod
9 8 adantr W PreHil A V B V C V W LMod
10 lmodgrp W LMod W Grp
11 9 10 syl W PreHil A V B V C V W Grp
12 simpr2 W PreHil A V B V C V B V
13 simpr3 W PreHil A V B V C V C V
14 3 4 grpsubcl W Grp B V C V B - ˙ C V
15 11 12 13 14 syl3anc W PreHil A V B V C V B - ˙ C V
16 eqid + W = + W
17 eqid + F = + F
18 1 2 3 16 17 ipdi W PreHil A V B - ˙ C V C V A , ˙ B - ˙ C + W C = A , ˙ B - ˙ C + F A , ˙ C
19 6 7 15 13 18 syl13anc W PreHil A V B V C V A , ˙ B - ˙ C + W C = A , ˙ B - ˙ C + F A , ˙ C
20 3 16 4 grpnpcan W Grp B V C V B - ˙ C + W C = B
21 11 12 13 20 syl3anc W PreHil A V B V C V B - ˙ C + W C = B
22 21 oveq2d W PreHil A V B V C V A , ˙ B - ˙ C + W C = A , ˙ B
23 19 22 eqtr3d W PreHil A V B V C V A , ˙ B - ˙ C + F A , ˙ C = A , ˙ B
24 1 lmodfgrp W LMod F Grp
25 9 24 syl W PreHil A V B V C V F Grp
26 eqid Base F = Base F
27 1 2 3 26 ipcl W PreHil A V B V A , ˙ B Base F
28 6 7 12 27 syl3anc W PreHil A V B V C V A , ˙ B Base F
29 1 2 3 26 ipcl W PreHil A V C V A , ˙ C Base F
30 6 7 13 29 syl3anc W PreHil A V B V C V A , ˙ C Base F
31 1 2 3 26 ipcl W PreHil A V B - ˙ C V A , ˙ B - ˙ C Base F
32 6 7 15 31 syl3anc W PreHil A V B V C V A , ˙ B - ˙ C Base F
33 26 17 5 grpsubadd F Grp A , ˙ B Base F A , ˙ C Base F A , ˙ B - ˙ C Base F A , ˙ B S A , ˙ C = A , ˙ B - ˙ C A , ˙ B - ˙ C + F A , ˙ C = A , ˙ B
34 25 28 30 32 33 syl13anc W PreHil A V B V C V A , ˙ B S A , ˙ C = A , ˙ B - ˙ C A , ˙ B - ˙ C + F A , ˙ C = A , ˙ B
35 23 34 mpbird W PreHil A V B V C V A , ˙ B S A , ˙ C = A , ˙ B - ˙ C
36 35 eqcomd W PreHil A V B V C V A , ˙ B - ˙ C = A , ˙ B S A , ˙ C