Metamath Proof Explorer


Theorem ipsubdir

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipsubdir.m - ˙ = - W
ipsubdir.s S = - F
Assertion ipsubdir W PreHil A V B V C V A - ˙ B , ˙ C = A , ˙ C S B , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipsubdir.m - ˙ = - W
5 ipsubdir.s S = - F
6 simpl W PreHil A V B V C V W PreHil
7 phllmod W PreHil W LMod
8 7 adantr W PreHil A V B V C V W LMod
9 lmodgrp W LMod W Grp
10 8 9 syl W PreHil A V B V C V W Grp
11 simpr1 W PreHil A V B V C V A V
12 simpr2 W PreHil A V B V C V B V
13 3 4 grpsubcl W Grp A V B V A - ˙ B V
14 10 11 12 13 syl3anc W PreHil A V B V C V A - ˙ B V
15 simpr3 W PreHil A V B V C V C V
16 eqid + W = + W
17 eqid + F = + F
18 1 2 3 16 17 ipdir W PreHil A - ˙ B V B V C V A - ˙ B + W B , ˙ C = A - ˙ B , ˙ C + F B , ˙ C
19 6 14 12 15 18 syl13anc W PreHil A V B V C V A - ˙ B + W B , ˙ C = A - ˙ B , ˙ C + F B , ˙ C
20 3 16 4 grpnpcan W Grp A V B V A - ˙ B + W B = A
21 10 11 12 20 syl3anc W PreHil A V B V C V A - ˙ B + W B = A
22 21 oveq1d W PreHil A V B V C V A - ˙ B + W B , ˙ C = A , ˙ C
23 19 22 eqtr3d W PreHil A V B V C V A - ˙ B , ˙ C + F B , ˙ C = A , ˙ C
24 1 lmodfgrp W LMod F Grp
25 8 24 syl W PreHil A V B V C V F Grp
26 eqid Base F = Base F
27 1 2 3 26 ipcl W PreHil A V C V A , ˙ C Base F
28 6 11 15 27 syl3anc W PreHil A V B V C V A , ˙ C Base F
29 1 2 3 26 ipcl W PreHil B V C V B , ˙ C Base F
30 6 12 15 29 syl3anc W PreHil A V B V C V B , ˙ C Base F
31 1 2 3 26 ipcl W PreHil A - ˙ B V C V A - ˙ B , ˙ C Base F
32 6 14 15 31 syl3anc W PreHil A V B V C V A - ˙ B , ˙ C Base F
33 26 17 5 grpsubadd F Grp A , ˙ C Base F B , ˙ C Base F A - ˙ B , ˙ C Base F A , ˙ C S B , ˙ C = A - ˙ B , ˙ C A - ˙ B , ˙ C + F B , ˙ C = A , ˙ C
34 25 28 30 32 33 syl13anc W PreHil A V B V C V A , ˙ C S B , ˙ C = A - ˙ B , ˙ C A - ˙ B , ˙ C + F B , ˙ C = A , ˙ C
35 23 34 mpbird W PreHil A V B V C V A , ˙ C S B , ˙ C = A - ˙ B , ˙ C
36 35 eqcomd W PreHil A V B V C V A - ˙ B , ˙ C = A , ˙ C S B , ˙ C