Metamath Proof Explorer


Theorem ipsvsca

Description: The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
Assertion ipsvsca · ˙ V · ˙ = A

Proof

Step Hyp Ref Expression
1 ipspart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
2 1 ipsstr A Struct 1 8
3 vscaid 𝑠 = Slot ndx
4 snsstp2 ndx · ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
5 ssun2 Scalar ndx S ndx · ˙ 𝑖 ndx I Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx I
6 5 1 sseqtrri Scalar ndx S ndx · ˙ 𝑖 ndx I A
7 4 6 sstri ndx · ˙ A
8 2 3 7 strfv · ˙ V · ˙ = A