Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Inner product
ipval2lem2
Next ⟩
ipval2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ipval2lem2
Description:
Lemma for
ipval3
.
(Contributed by
NM
, 1-Feb-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
dipfval.1
⊢
X
=
BaseSet
⁡
U
dipfval.2
⊢
G
=
+
v
⁡
U
dipfval.4
⊢
S
=
⋅
𝑠OLD
⁡
U
dipfval.6
⊢
N
=
norm
CV
⁡
U
dipfval.7
⊢
P
=
⋅
𝑖OLD
⁡
U
Assertion
ipval2lem2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
N
⁡
A
G
C
S
B
2
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
dipfval.1
⊢
X
=
BaseSet
⁡
U
2
dipfval.2
⊢
G
=
+
v
⁡
U
3
dipfval.4
⊢
S
=
⋅
𝑠OLD
⁡
U
4
dipfval.6
⊢
N
=
norm
CV
⁡
U
5
dipfval.7
⊢
P
=
⋅
𝑖OLD
⁡
U
6
simpl1
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
U
∈
NrmCVec
7
simpl2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
A
∈
X
8
1
3
nvscl
⊢
U
∈
NrmCVec
∧
C
∈
ℂ
∧
B
∈
X
→
C
S
B
∈
X
9
8
3com23
⊢
U
∈
NrmCVec
∧
B
∈
X
∧
C
∈
ℂ
→
C
S
B
∈
X
10
9
3expa
⊢
U
∈
NrmCVec
∧
B
∈
X
∧
C
∈
ℂ
→
C
S
B
∈
X
11
10
3adantl2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
C
S
B
∈
X
12
1
2
nvgcl
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
C
S
B
∈
X
→
A
G
C
S
B
∈
X
13
6
7
11
12
syl3anc
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
A
G
C
S
B
∈
X
14
1
4
nvcl
⊢
U
∈
NrmCVec
∧
A
G
C
S
B
∈
X
→
N
⁡
A
G
C
S
B
∈
ℝ
15
6
13
14
syl2anc
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
N
⁡
A
G
C
S
B
∈
ℝ
16
15
resqcld
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
C
∈
ℂ
→
N
⁡
A
G
C
S
B
2
∈
ℝ