Metamath Proof Explorer


Theorem ipval2lem2

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X = BaseSet U
dipfval.2 G = + v U
dipfval.4 S = 𝑠OLD U
dipfval.6 N = norm CV U
dipfval.7 P = 𝑖OLD U
Assertion ipval2lem2 U NrmCVec A X B X C N A G C S B 2

Proof

Step Hyp Ref Expression
1 dipfval.1 X = BaseSet U
2 dipfval.2 G = + v U
3 dipfval.4 S = 𝑠OLD U
4 dipfval.6 N = norm CV U
5 dipfval.7 P = 𝑖OLD U
6 simpl1 U NrmCVec A X B X C U NrmCVec
7 simpl2 U NrmCVec A X B X C A X
8 1 3 nvscl U NrmCVec C B X C S B X
9 8 3com23 U NrmCVec B X C C S B X
10 9 3expa U NrmCVec B X C C S B X
11 10 3adantl2 U NrmCVec A X B X C C S B X
12 1 2 nvgcl U NrmCVec A X C S B X A G C S B X
13 6 7 11 12 syl3anc U NrmCVec A X B X C A G C S B X
14 1 4 nvcl U NrmCVec A G C S B X N A G C S B
15 6 13 14 syl2anc U NrmCVec A X B X C N A G C S B
16 15 resqcld U NrmCVec A X B X C N A G C S B 2