Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Inner product
ipval2lem3
Next ⟩
ipval2lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
ipval2lem3
Description:
Lemma for
ipval3
.
(Contributed by
NM
, 1-Feb-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
dipfval.1
⊢
X
=
BaseSet
⁡
U
dipfval.2
⊢
G
=
+
v
⁡
U
dipfval.4
⊢
S
=
⋅
𝑠OLD
⁡
U
dipfval.6
⊢
N
=
norm
CV
⁡
U
dipfval.7
⊢
P
=
⋅
𝑖OLD
⁡
U
Assertion
ipval2lem3
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
G
B
2
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
dipfval.1
⊢
X
=
BaseSet
⁡
U
2
dipfval.2
⊢
G
=
+
v
⁡
U
3
dipfval.4
⊢
S
=
⋅
𝑠OLD
⁡
U
4
dipfval.6
⊢
N
=
norm
CV
⁡
U
5
dipfval.7
⊢
P
=
⋅
𝑖OLD
⁡
U
6
1
3
nvsid
⊢
U
∈
NrmCVec
∧
B
∈
X
→
1
S
B
=
B
7
6
oveq2d
⊢
U
∈
NrmCVec
∧
B
∈
X
→
A
G
1
S
B
=
A
G
B
8
7
fveq2d
⊢
U
∈
NrmCVec
∧
B
∈
X
→
N
⁡
A
G
1
S
B
=
N
⁡
A
G
B
9
8
oveq1d
⊢
U
∈
NrmCVec
∧
B
∈
X
→
N
⁡
A
G
1
S
B
2
=
N
⁡
A
G
B
2
10
9
3adant2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
G
1
S
B
2
=
N
⁡
A
G
B
2
11
ax-1cn
⊢
1
∈
ℂ
12
1
2
3
4
5
ipval2lem2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
∧
1
∈
ℂ
→
N
⁡
A
G
1
S
B
2
∈
ℝ
13
11
12
mpan2
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
G
1
S
B
2
∈
ℝ
14
10
13
eqeltrrd
⊢
U
∈
NrmCVec
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
G
B
2
∈
ℝ