Metamath Proof Explorer


Theorem ipval2lem3

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X = BaseSet U
dipfval.2 G = + v U
dipfval.4 S = 𝑠OLD U
dipfval.6 N = norm CV U
dipfval.7 P = 𝑖OLD U
Assertion ipval2lem3 U NrmCVec A X B X N A G B 2

Proof

Step Hyp Ref Expression
1 dipfval.1 X = BaseSet U
2 dipfval.2 G = + v U
3 dipfval.4 S = 𝑠OLD U
4 dipfval.6 N = norm CV U
5 dipfval.7 P = 𝑖OLD U
6 1 3 nvsid U NrmCVec B X 1 S B = B
7 6 oveq2d U NrmCVec B X A G 1 S B = A G B
8 7 fveq2d U NrmCVec B X N A G 1 S B = N A G B
9 8 oveq1d U NrmCVec B X N A G 1 S B 2 = N A G B 2
10 9 3adant2 U NrmCVec A X B X N A G 1 S B 2 = N A G B 2
11 ax-1cn 1
12 1 2 3 4 5 ipval2lem2 U NrmCVec A X B X 1 N A G 1 S B 2
13 11 12 mpan2 U NrmCVec A X B X N A G 1 S B 2
14 10 13 eqeltrrd U NrmCVec A X B X N A G B 2