Metamath Proof Explorer


Theorem ipval2lem4

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X = BaseSet U
dipfval.2 G = + v U
dipfval.4 S = 𝑠OLD U
dipfval.6 N = norm CV U
dipfval.7 P = 𝑖OLD U
Assertion ipval2lem4 U NrmCVec A X B X C N A G C S B 2

Proof

Step Hyp Ref Expression
1 dipfval.1 X = BaseSet U
2 dipfval.2 G = + v U
3 dipfval.4 S = 𝑠OLD U
4 dipfval.6 N = norm CV U
5 dipfval.7 P = 𝑖OLD U
6 1 2 3 4 5 ipval2lem2 U NrmCVec A X B X C N A G C S B 2
7 6 recnd U NrmCVec A X B X C N A G C S B 2