Metamath Proof Explorer


Theorem ipz

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 X = BaseSet U
dip0r.5 Z = 0 vec U
dip0r.7 P = 𝑖OLD U
Assertion ipz U NrmCVec A X A P A = 0 A = Z

Proof

Step Hyp Ref Expression
1 dip0r.1 X = BaseSet U
2 dip0r.5 Z = 0 vec U
3 dip0r.7 P = 𝑖OLD U
4 eqid norm CV U = norm CV U
5 1 4 3 ipidsq U NrmCVec A X A P A = norm CV U A 2
6 5 eqeq1d U NrmCVec A X A P A = 0 norm CV U A 2 = 0
7 1 4 nvcl U NrmCVec A X norm CV U A
8 7 recnd U NrmCVec A X norm CV U A
9 sqeq0 norm CV U A norm CV U A 2 = 0 norm CV U A = 0
10 8 9 syl U NrmCVec A X norm CV U A 2 = 0 norm CV U A = 0
11 1 2 4 nvz U NrmCVec A X norm CV U A = 0 A = Z
12 6 10 11 3bitrd U NrmCVec A X A P A = 0 A = Z