Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
irec
Next ⟩
i2
Metamath Proof Explorer
Ascii
Unicode
Theorem
irec
Description:
The reciprocal of
_i
.
(Contributed by
NM
, 11-Oct-1999)
Ref
Expression
Assertion
irec
⊢
1
i
=
−
i
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i
∈
ℂ
2
1
1
mulneg2i
⊢
i
⁢
−
i
=
−
i
⁢
i
3
ixi
⊢
i
⁢
i
=
−
1
4
ax-1cn
⊢
1
∈
ℂ
5
1
1
mulcli
⊢
i
⁢
i
∈
ℂ
6
4
5
negcon2i
⊢
1
=
−
i
⁢
i
↔
i
⁢
i
=
−
1
7
3
6
mpbir
⊢
1
=
−
i
⁢
i
8
2
7
eqtr4i
⊢
i
⁢
−
i
=
1
9
negicn
⊢
−
i
∈
ℂ
10
ine0
⊢
i
≠
0
11
4
1
9
10
divmuli
⊢
1
i
=
−
i
↔
i
⁢
−
i
=
1
12
8
11
mpbir
⊢
1
i
=
−
i