Metamath Proof Explorer


Theorem iresn0n0

Description: The identity function restricted to a class A is empty iff the class A is empty. (Contributed by AV, 30-Jan-2024)

Ref Expression
Assertion iresn0n0 A = I A =

Proof

Step Hyp Ref Expression
1 opab0 x y | x A y = x = x y ¬ x A y = x
2 opabresid I A = x y | x A y = x
3 2 eqeq1i I A = x y | x A y = x =
4 nel02 A = ¬ x A
5 4 intnanrd A = ¬ x A y = x
6 5 alrimivv A = x y ¬ x A y = x
7 ianor ¬ x A y = x ¬ x A ¬ y = x
8 7 albii y ¬ x A y = x y ¬ x A ¬ y = x
9 19.32v y ¬ x A ¬ y = x ¬ x A y ¬ y = x
10 id ¬ x A ¬ x A
11 ax6v ¬ y ¬ y = x
12 11 pm2.21i y ¬ y = x ¬ x A
13 10 12 jaoi ¬ x A y ¬ y = x ¬ x A
14 9 13 sylbi y ¬ x A ¬ y = x ¬ x A
15 8 14 sylbi y ¬ x A y = x ¬ x A
16 15 alimi x y ¬ x A y = x x ¬ x A
17 eq0 A = x ¬ x A
18 16 17 sylibr x y ¬ x A y = x A =
19 6 18 impbii A = x y ¬ x A y = x
20 1 3 19 3bitr4ri A = I A =