Metamath Proof Explorer


Theorem irrapxlem4

Description: Lemma for irrapx1 . Eliminate ranges, use positivity of the input to force positivity of the output by increasing B as needed. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem4 A + B x y A x y < 1 if x B B x

Proof

Step Hyp Ref Expression
1 elfznn a 1 if B 1 A + 1 1 A + 1 B a
2 1 ad3antlr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B a
3 nn0z b 0 b
4 3 ad2antlr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B b
5 simpl A + B A +
6 5 ad3antrrr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A +
7 6 rpred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A
8 2 nnred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B a
9 7 8 remulcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a
10 nn0re b 0 b
11 10 ad2antlr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B b
12 9 11 resubcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b
13 12 recnd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b
14 13 abscld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b
15 5 rpreccld A + B 1 A +
16 15 rprege0d A + B 1 A 0 1 A
17 flge0nn0 1 A 0 1 A 1 A 0
18 nn0p1nn 1 A 0 1 A + 1
19 16 17 18 3syl A + B 1 A + 1
20 19 ad3antrrr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1
21 simpr A + B B
22 21 ad3antrrr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B B
23 20 22 ifcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if B 1 A + 1 1 A + 1 B
24 23 nnrecred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B
25 0red A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0
26 9 25 resubcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a 0
27 simpr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b < 1 if B 1 A + 1 1 A + 1 B
28 20 nnrecred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1
29 22 nnred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B B
30 6 rprecred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A
31 30 flcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A
32 31 zred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A
33 peano2re 1 A 1 A + 1
34 32 33 syl A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1
35 max2 B 1 A + 1 1 A + 1 if B 1 A + 1 1 A + 1 B
36 29 34 35 syl2anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1 if B 1 A + 1 1 A + 1 B
37 20 nngt0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < 1 A + 1
38 23 nnred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if B 1 A + 1 1 A + 1 B
39 23 nngt0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < if B 1 A + 1 1 A + 1 B
40 lerec 1 A + 1 0 < 1 A + 1 if B 1 A + 1 1 A + 1 B 0 < if B 1 A + 1 1 A + 1 B 1 A + 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1
41 34 37 38 39 40 syl22anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1
42 36 41 mpbid A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1
43 fllep1 1 A 1 A 1 A + 1
44 30 43 syl A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A 1 A + 1
45 20 nncnd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1
46 20 nnne0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A + 1 0
47 45 46 recrecd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 1 1 A + 1 = 1 A + 1
48 44 47 breqtrrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 A 1 1 1 A + 1
49 34 37 recgt0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < 1 1 A + 1
50 6 rpgt0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < A
51 lerec 1 1 A + 1 0 < 1 1 A + 1 A 0 < A 1 1 A + 1 A 1 A 1 1 1 A + 1
52 28 49 7 50 51 syl22anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1 A 1 A 1 1 1 A + 1
53 48 52 mpbird A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 1 A + 1 A
54 24 28 7 42 53 letrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B A
55 7 recnd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A
56 55 mulid1d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A 1 = A
57 2 nnge1d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 a
58 1red A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1
59 58 8 6 lemul2d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 a A 1 A a
60 57 59 mpbid A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A 1 A a
61 56 60 eqbrtrrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A A a
62 9 recnd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a
63 62 subid1d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a 0 = A a
64 61 63 breqtrrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A A a 0
65 24 7 26 54 64 letrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B A a 0
66 14 24 26 27 65 ltletrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b < A a 0
67 12 26 absltd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b < A a 0 A a 0 < A a b A a b < A a 0
68 66 67 mpbid A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a 0 < A a b A a b < A a 0
69 68 simprd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b < A a 0
70 25 11 9 ltsub2d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < b A a b < A a 0
71 69 70 mpbird A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < b
72 elnnz b b 0 < b
73 4 71 72 sylanbrc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B b
74 22 2 ifcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if a B B a
75 74 nnrecred A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if a B B a
76 elfzle2 a 1 if B 1 A + 1 1 A + 1 B a if B 1 A + 1 1 A + 1 B
77 76 ad3antlr A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B a if B 1 A + 1 1 A + 1 B
78 max1 B 1 A + 1 B if B 1 A + 1 1 A + 1 B
79 29 34 78 syl2anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B B if B 1 A + 1 1 A + 1 B
80 maxle a B if B 1 A + 1 1 A + 1 B if a B B a if B 1 A + 1 1 A + 1 B a if B 1 A + 1 1 A + 1 B B if B 1 A + 1 1 A + 1 B
81 8 29 38 80 syl3anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if a B B a if B 1 A + 1 1 A + 1 B a if B 1 A + 1 1 A + 1 B B if B 1 A + 1 1 A + 1 B
82 77 79 81 mpbir2and A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if a B B a if B 1 A + 1 1 A + 1 B
83 29 8 ifcld A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if a B B a
84 22 nngt0d A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < B
85 max2 a B B if a B B a
86 8 29 85 syl2anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B B if a B B a
87 25 29 83 84 86 ltletrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 0 < if a B B a
88 lerec if a B B a 0 < if a B B a if B 1 A + 1 1 A + 1 B 0 < if B 1 A + 1 1 A + 1 B if a B B a if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 if a B B a
89 83 87 38 39 88 syl22anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B if a B B a if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 if a B B a
90 82 89 mpbid A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B 1 if B 1 A + 1 1 A + 1 B 1 if a B B a
91 14 24 75 27 90 ltletrd A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B A a b < 1 if a B B a
92 oveq2 x = a A x = A a
93 92 fvoveq1d x = a A x y = A a y
94 breq1 x = a x B a B
95 id x = a x = a
96 94 95 ifbieq2d x = a if x B B x = if a B B a
97 96 oveq2d x = a 1 if x B B x = 1 if a B B a
98 93 97 breq12d x = a A x y < 1 if x B B x A a y < 1 if a B B a
99 oveq2 y = b A a y = A a b
100 99 fveq2d y = b A a y = A a b
101 100 breq1d y = b A a y < 1 if a B B a A a b < 1 if a B B a
102 98 101 rspc2ev a b A a b < 1 if a B B a x y A x y < 1 if x B B x
103 2 73 91 102 syl3anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B x y A x y < 1 if x B B x
104 19 21 ifcld A + B if B 1 A + 1 1 A + 1 B
105 irrapxlem3 A + if B 1 A + 1 1 A + 1 B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B
106 5 104 105 syl2anc A + B a 1 if B 1 A + 1 1 A + 1 B b 0 A a b < 1 if B 1 A + 1 1 A + 1 B
107 103 106 r19.29vva A + B x y A x y < 1 if x B B x