Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
rpreccld |
|
3 |
2
|
rprege0d |
|
4 |
|
flge0nn0 |
|
5 |
|
nn0p1nn |
|
6 |
3 4 5
|
3syl |
|
7 |
|
irrapxlem4 |
|
8 |
6 7
|
syldan |
|
9 |
|
simplrr |
|
10 |
|
nnq |
|
11 |
9 10
|
syl |
|
12 |
|
simplrl |
|
13 |
|
nnq |
|
14 |
12 13
|
syl |
|
15 |
12
|
nnne0d |
|
16 |
|
qdivcl |
|
17 |
11 14 15 16
|
syl3anc |
|
18 |
9
|
nnrpd |
|
19 |
12
|
nnrpd |
|
20 |
18 19
|
rpdivcld |
|
21 |
20
|
rpgt0d |
|
22 |
12
|
nnred |
|
23 |
12
|
nnnn0d |
|
24 |
23
|
nn0ge0d |
|
25 |
22 24
|
absidd |
|
26 |
25
|
eqcomd |
|
27 |
26
|
oveq1d |
|
28 |
12
|
nncnd |
|
29 |
|
qre |
|
30 |
17 29
|
syl |
|
31 |
|
rpre |
|
32 |
31
|
ad3antrrr |
|
33 |
30 32
|
resubcld |
|
34 |
33
|
recnd |
|
35 |
28 34
|
absmuld |
|
36 |
27 35
|
eqtr4d |
|
37 |
|
qcn |
|
38 |
17 37
|
syl |
|
39 |
|
rpcn |
|
40 |
39
|
ad3antrrr |
|
41 |
28 38 40
|
subdid |
|
42 |
9
|
nncnd |
|
43 |
42 28 15
|
divcan2d |
|
44 |
28 40
|
mulcomd |
|
45 |
43 44
|
oveq12d |
|
46 |
41 45
|
eqtrd |
|
47 |
46
|
fveq2d |
|
48 |
32 22
|
remulcld |
|
49 |
48
|
recnd |
|
50 |
42 49
|
abssubd |
|
51 |
36 47 50
|
3eqtrd |
|
52 |
9
|
nnred |
|
53 |
48 52
|
resubcld |
|
54 |
53
|
recnd |
|
55 |
54
|
abscld |
|
56 |
|
simpllr |
|
57 |
56
|
rprecred |
|
58 |
56
|
rpreccld |
|
59 |
58
|
rpge0d |
|
60 |
57 59 4
|
syl2anc |
|
61 |
60 5
|
syl |
|
62 |
61
|
nnrpd |
|
63 |
62 19
|
ifcld |
|
64 |
63
|
rprecred |
|
65 |
56
|
rpred |
|
66 |
22 65
|
remulcld |
|
67 |
|
simpr |
|
68 |
58
|
rprecred |
|
69 |
61
|
nnred |
|
70 |
69 22
|
ifcld |
|
71 |
|
fllep1 |
|
72 |
57 71
|
syl |
|
73 |
|
max2 |
|
74 |
22 69 73
|
syl2anc |
|
75 |
57 69 70 72 74
|
letrd |
|
76 |
58 63
|
lerecd |
|
77 |
75 76
|
mpbid |
|
78 |
65
|
recnd |
|
79 |
56
|
rpne0d |
|
80 |
78 79
|
recrecd |
|
81 |
78
|
mulid2d |
|
82 |
80 81
|
eqtr4d |
|
83 |
12
|
nnge1d |
|
84 |
|
1red |
|
85 |
84 22 56
|
lemul1d |
|
86 |
83 85
|
mpbid |
|
87 |
82 86
|
eqbrtrd |
|
88 |
64 68 66 77 87
|
letrd |
|
89 |
55 64 66 67 88
|
ltletrd |
|
90 |
51 89
|
eqbrtrd |
|
91 |
34
|
abscld |
|
92 |
12
|
nngt0d |
|
93 |
|
ltmul2 |
|
94 |
91 65 22 92 93
|
syl112anc |
|
95 |
90 94
|
mpbird |
|
96 |
22 22
|
remulcld |
|
97 |
22 15
|
msqgt0d |
|
98 |
97
|
gt0ne0d |
|
99 |
96 98
|
rereccld |
|
100 |
|
qdencl |
|
101 |
17 100
|
syl |
|
102 |
101
|
nnred |
|
103 |
102 102
|
remulcld |
|
104 |
101
|
nnne0d |
|
105 |
102 104
|
msqgt0d |
|
106 |
105
|
gt0ne0d |
|
107 |
103 106
|
rereccld |
|
108 |
22 15
|
rereccld |
|
109 |
|
max1 |
|
110 |
22 69 109
|
syl2anc |
|
111 |
19 63
|
lerecd |
|
112 |
110 111
|
mpbid |
|
113 |
55 64 108 67 112
|
ltletrd |
|
114 |
28 28 28 15 15
|
divdiv1d |
|
115 |
28 15
|
dividd |
|
116 |
115
|
oveq1d |
|
117 |
96
|
recnd |
|
118 |
28 117 98
|
divrecd |
|
119 |
114 116 118
|
3eqtr3rd |
|
120 |
113 51 119
|
3brtr4d |
|
121 |
|
ltmul2 |
|
122 |
91 99 22 92 121
|
syl112anc |
|
123 |
120 122
|
mpbird |
|
124 |
9
|
nnzd |
|
125 |
|
divdenle |
|
126 |
124 12 125
|
syl2anc |
|
127 |
101
|
nnnn0d |
|
128 |
127
|
nn0ge0d |
|
129 |
|
le2msq |
|
130 |
102 128 22 24 129
|
syl22anc |
|
131 |
126 130
|
mpbid |
|
132 |
|
lerec |
|
133 |
103 105 96 97 132
|
syl22anc |
|
134 |
131 133
|
mpbid |
|
135 |
91 99 107 123 134
|
ltletrd |
|
136 |
101
|
nncnd |
|
137 |
|
2nn0 |
|
138 |
|
expneg |
|
139 |
136 137 138
|
sylancl |
|
140 |
136
|
sqvald |
|
141 |
140
|
oveq2d |
|
142 |
139 141
|
eqtrd |
|
143 |
135 142
|
breqtrrd |
|
144 |
|
breq2 |
|
145 |
|
fvoveq1 |
|
146 |
145
|
breq1d |
|
147 |
|
fveq2 |
|
148 |
147
|
oveq1d |
|
149 |
145 148
|
breq12d |
|
150 |
144 146 149
|
3anbi123d |
|
151 |
150
|
rspcev |
|
152 |
17 21 95 143 151
|
syl13anc |
|
153 |
152
|
ex |
|
154 |
153
|
rexlimdvva |
|
155 |
8 154
|
mpd |
|