Metamath Proof Explorer


Theorem irrapxlem5

Description: Lemma for irrapx1 . Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem5 A + B + x 0 < x x A < B x A < denom x 2

Proof

Step Hyp Ref Expression
1 simpr A + B + B +
2 1 rpreccld A + B + 1 B +
3 2 rprege0d A + B + 1 B 0 1 B
4 flge0nn0 1 B 0 1 B 1 B 0
5 nn0p1nn 1 B 0 1 B + 1
6 3 4 5 3syl A + B + 1 B + 1
7 irrapxlem4 A + 1 B + 1 a b A a b < 1 if a 1 B + 1 1 B + 1 a
8 6 7 syldan A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a
9 simplrr A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b
10 nnq b b
11 9 10 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b
12 simplrl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a
13 nnq a a
14 12 13 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a
15 12 nnne0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a 0
16 qdivcl b a a 0 b a
17 11 14 15 16 syl3anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a
18 9 nnrpd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b +
19 12 nnrpd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a +
20 18 19 rpdivcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a +
21 20 rpgt0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 < b a
22 12 nnred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a
23 12 nnnn0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a 0
24 23 nn0ge0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 a
25 22 24 absidd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a = a
26 25 eqcomd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a = a
27 26 oveq1d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = a b a A
28 12 nncnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a
29 qre b a b a
30 17 29 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a
31 rpre A + A
32 31 ad3antrrr A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A
33 30 32 resubcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A
34 33 recnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A
35 28 34 absmuld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = a b a A
36 27 35 eqtr4d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = a b a A
37 qcn b a b a
38 17 37 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a
39 rpcn A + A
40 39 ad3antrrr A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A
41 28 38 40 subdid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = a b a a A
42 9 nncnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b
43 42 28 15 divcan2d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a = b
44 28 40 mulcomd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a A = A a
45 43 44 oveq12d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a a A = b A a
46 41 45 eqtrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = b A a
47 46 fveq2d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = b A a
48 32 22 remulcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a
49 48 recnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a
50 42 49 abssubd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b A a = A a b
51 36 47 50 3eqtrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A = A a b
52 9 nnred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b
53 48 52 resubcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b
54 53 recnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b
55 54 abscld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b
56 simpllr A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a B +
57 56 rprecred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B
58 56 rpreccld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B +
59 58 rpge0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 1 B
60 57 59 4 syl2anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B 0
61 60 5 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B + 1
62 61 nnrpd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B + 1 +
63 62 19 ifcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a if a 1 B + 1 1 B + 1 a +
64 63 rprecred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a
65 56 rpred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a B
66 22 65 remulcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a B
67 simpr A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b < 1 if a 1 B + 1 1 B + 1 a
68 58 rprecred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 1 B
69 61 nnred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B + 1
70 69 22 ifcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a if a 1 B + 1 1 B + 1 a
71 fllep1 1 B 1 B 1 B + 1
72 57 71 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B 1 B + 1
73 max2 a 1 B + 1 1 B + 1 if a 1 B + 1 1 B + 1 a
74 22 69 73 syl2anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B + 1 if a 1 B + 1 1 B + 1 a
75 57 69 70 72 74 letrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B if a 1 B + 1 1 B + 1 a
76 58 63 lerecd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a 1 1 B
77 75 76 mpbid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a 1 1 B
78 65 recnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a B
79 56 rpne0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a B 0
80 78 79 recrecd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 1 B = B
81 78 mulid2d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B = B
82 80 81 eqtr4d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 1 B = 1 B
83 12 nnge1d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 a
84 1red A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1
85 84 22 56 lemul1d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 a 1 B a B
86 83 85 mpbid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 B a B
87 82 86 eqbrtrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 1 B a B
88 64 68 66 77 87 letrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a a B
89 55 64 66 67 88 ltletrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b < a B
90 51 89 eqbrtrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A < a B
91 34 abscld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A
92 12 nngt0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 < a
93 ltmul2 b a A B a 0 < a b a A < B a b a A < a B
94 91 65 22 92 93 syl112anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < B a b a A < a B
95 90 94 mpbird A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < B
96 22 22 remulcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a
97 22 15 msqgt0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 < a a
98 97 gt0ne0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a 0
99 96 98 rereccld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 a a
100 qdencl b a denom b a
101 17 100 syl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a
102 101 nnred A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a
103 102 102 remulcld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a denom b a
104 101 nnne0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a 0
105 102 104 msqgt0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 < denom b a denom b a
106 105 gt0ne0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a denom b a 0
107 103 106 rereccld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 denom b a denom b a
108 22 15 rereccld A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 a
109 max1 a 1 B + 1 a if a 1 B + 1 1 B + 1 a
110 22 69 109 syl2anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a if a 1 B + 1 1 B + 1 a
111 19 63 lerecd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a 1 a
112 110 111 mpbid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 if a 1 B + 1 1 B + 1 a 1 a
113 55 64 108 67 112 ltletrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a A a b < 1 a
114 28 28 28 15 15 divdiv1d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a a = a a a
115 28 15 dividd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a = 1
116 115 oveq1d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a a = 1 a
117 96 recnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a
118 28 117 98 divrecd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a a a = a 1 a a
119 114 116 118 3eqtr3rd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a 1 a a = 1 a
120 113 51 119 3brtr4d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a a b a A < a 1 a a
121 ltmul2 b a A 1 a a a 0 < a b a A < 1 a a a b a A < a 1 a a
122 91 99 22 92 121 syl112anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < 1 a a a b a A < a 1 a a
123 120 122 mpbird A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < 1 a a
124 9 nnzd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b
125 divdenle b a denom b a a
126 124 12 125 syl2anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a a
127 101 nnnn0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a 0
128 127 nn0ge0d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 0 denom b a
129 le2msq denom b a 0 denom b a a 0 a denom b a a denom b a denom b a a a
130 102 128 22 24 129 syl22anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a a denom b a denom b a a a
131 126 130 mpbid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a denom b a a a
132 lerec denom b a denom b a 0 < denom b a denom b a a a 0 < a a denom b a denom b a a a 1 a a 1 denom b a denom b a
133 103 105 96 97 132 syl22anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a denom b a a a 1 a a 1 denom b a denom b a
134 131 133 mpbid A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 a a 1 denom b a denom b a
135 91 99 107 123 134 ltletrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < 1 denom b a denom b a
136 101 nncnd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a
137 2nn0 2 0
138 expneg denom b a 2 0 denom b a 2 = 1 denom b a 2
139 136 137 138 sylancl A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a 2 = 1 denom b a 2
140 136 sqvald A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a 2 = denom b a denom b a
141 140 oveq2d A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a 1 denom b a 2 = 1 denom b a denom b a
142 139 141 eqtrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a denom b a 2 = 1 denom b a denom b a
143 135 142 breqtrrd A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a b a A < denom b a 2
144 breq2 x = b a 0 < x 0 < b a
145 fvoveq1 x = b a x A = b a A
146 145 breq1d x = b a x A < B b a A < B
147 fveq2 x = b a denom x = denom b a
148 147 oveq1d x = b a denom x 2 = denom b a 2
149 145 148 breq12d x = b a x A < denom x 2 b a A < denom b a 2
150 144 146 149 3anbi123d x = b a 0 < x x A < B x A < denom x 2 0 < b a b a A < B b a A < denom b a 2
151 150 rspcev b a 0 < b a b a A < B b a A < denom b a 2 x 0 < x x A < B x A < denom x 2
152 17 21 95 143 151 syl13anc A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a x 0 < x x A < B x A < denom x 2
153 152 ex A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a x 0 < x x A < B x A < denom x 2
154 153 rexlimdvva A + B + a b A a b < 1 if a 1 B + 1 1 B + 1 a x 0 < x x A < B x A < denom x 2
155 8 154 mpd A + B + x 0 < x x A < B x A < denom x 2