Metamath Proof Explorer


Theorem irrapxlem6

Description: Lemma for irrapx1 . Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem6 A + B + x y | 0 < y y A < denom y 2 x A < B

Proof

Step Hyp Ref Expression
1 simplr A + B + a 0 < a a A < B a A < denom a 2 a
2 simpr1 A + B + a 0 < a a A < B a A < denom a 2 0 < a
3 simpr3 A + B + a 0 < a a A < B a A < denom a 2 a A < denom a 2
4 2 3 jca A + B + a 0 < a a A < B a A < denom a 2 0 < a a A < denom a 2
5 breq2 y = a 0 < y 0 < a
6 fvoveq1 y = a y A = a A
7 fveq2 y = a denom y = denom a
8 7 oveq1d y = a denom y 2 = denom a 2
9 6 8 breq12d y = a y A < denom y 2 a A < denom a 2
10 5 9 anbi12d y = a 0 < y y A < denom y 2 0 < a a A < denom a 2
11 10 elrab a y | 0 < y y A < denom y 2 a 0 < a a A < denom a 2
12 1 4 11 sylanbrc A + B + a 0 < a a A < B a A < denom a 2 a y | 0 < y y A < denom y 2
13 simpr2 A + B + a 0 < a a A < B a A < denom a 2 a A < B
14 fvoveq1 x = a x A = a A
15 14 breq1d x = a x A < B a A < B
16 15 rspcev a y | 0 < y y A < denom y 2 a A < B x y | 0 < y y A < denom y 2 x A < B
17 12 13 16 syl2anc A + B + a 0 < a a A < B a A < denom a 2 x y | 0 < y y A < denom y 2 x A < B
18 irrapxlem5 A + B + a 0 < a a A < B a A < denom a 2
19 17 18 r19.29a A + B + x y | 0 < y y A < denom y 2 x A < B