Metamath Proof Explorer


Theorem irredcl

Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredcl.b B = Base R
Assertion irredcl X I X B

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredcl.b B = Base R
3 eqid Unit R = Unit R
4 eqid R = R
5 2 3 1 4 isirred2 X I X B ¬ X Unit R x B y B x R y = X x Unit R y Unit R
6 5 simp1bi X I X B