Metamath Proof Explorer


Theorem irredlmul

Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredrmul.u U = Unit R
irredrmul.t · ˙ = R
Assertion irredlmul R Ring X U Y I X · ˙ Y I

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredrmul.u U = Unit R
3 irredrmul.t · ˙ = R
4 eqid Base R = Base R
5 eqid opp r R = opp r R
6 eqid opp r R = opp r R
7 4 3 5 6 opprmul Y opp r R X = X · ˙ Y
8 5 opprring R Ring opp r R Ring
9 5 1 opprirred I = Irred opp r R
10 2 5 opprunit U = Unit opp r R
11 9 10 6 irredrmul opp r R Ring Y I X U Y opp r R X I
12 8 11 syl3an1 R Ring Y I X U Y opp r R X I
13 12 3com23 R Ring X U Y I Y opp r R X I
14 7 13 eqeltrrid R Ring X U Y I X · ˙ Y I