Metamath Proof Explorer


Theorem irredn0

Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredn0.z 0 ˙ = 0 R
Assertion irredn0 R Ring X I X 0 ˙

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredn0.z 0 ˙ = 0 R
3 eqid Base R = Base R
4 3 2 ring0cl R Ring 0 ˙ Base R
5 4 anim1i R Ring ¬ 0 ˙ Unit R 0 ˙ Base R ¬ 0 ˙ Unit R
6 eldif 0 ˙ Base R Unit R 0 ˙ Base R ¬ 0 ˙ Unit R
7 5 6 sylibr R Ring ¬ 0 ˙ Unit R 0 ˙ Base R Unit R
8 eqid R = R
9 3 8 2 ringlz R Ring 0 ˙ Base R 0 ˙ R 0 ˙ = 0 ˙
10 4 9 mpdan R Ring 0 ˙ R 0 ˙ = 0 ˙
11 10 adantr R Ring ¬ 0 ˙ Unit R 0 ˙ R 0 ˙ = 0 ˙
12 oveq1 x = 0 ˙ x R y = 0 ˙ R y
13 12 eqeq1d x = 0 ˙ x R y = 0 ˙ 0 ˙ R y = 0 ˙
14 oveq2 y = 0 ˙ 0 ˙ R y = 0 ˙ R 0 ˙
15 14 eqeq1d y = 0 ˙ 0 ˙ R y = 0 ˙ 0 ˙ R 0 ˙ = 0 ˙
16 13 15 rspc2ev 0 ˙ Base R Unit R 0 ˙ Base R Unit R 0 ˙ R 0 ˙ = 0 ˙ x Base R Unit R y Base R Unit R x R y = 0 ˙
17 7 7 11 16 syl3anc R Ring ¬ 0 ˙ Unit R x Base R Unit R y Base R Unit R x R y = 0 ˙
18 17 ex R Ring ¬ 0 ˙ Unit R x Base R Unit R y Base R Unit R x R y = 0 ˙
19 18 orrd R Ring 0 ˙ Unit R x Base R Unit R y Base R Unit R x R y = 0 ˙
20 eqid Unit R = Unit R
21 eqid Base R Unit R = Base R Unit R
22 3 20 1 21 8 isnirred 0 ˙ Base R ¬ 0 ˙ I 0 ˙ Unit R x Base R Unit R y Base R Unit R x R y = 0 ˙
23 4 22 syl R Ring ¬ 0 ˙ I 0 ˙ Unit R x Base R Unit R y Base R Unit R x R y = 0 ˙
24 19 23 mpbird R Ring ¬ 0 ˙ I
25 24 adantr R Ring X I ¬ 0 ˙ I
26 simpr R Ring X I X I
27 eleq1 X = 0 ˙ X I 0 ˙ I
28 26 27 syl5ibcom R Ring X I X = 0 ˙ 0 ˙ I
29 28 necon3bd R Ring X I ¬ 0 ˙ I X 0 ˙
30 25 29 mpd R Ring X I X 0 ˙