Metamath Proof Explorer


Theorem irredn1

Description: The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredn1.o 1 ˙ = 1 R
Assertion irredn1 R Ring X I X 1 ˙

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredn1.o 1 ˙ = 1 R
3 eqid Unit R = Unit R
4 3 2 1unit R Ring 1 ˙ Unit R
5 eleq1 X = 1 ˙ X Unit R 1 ˙ Unit R
6 4 5 syl5ibrcom R Ring X = 1 ˙ X Unit R
7 6 necon3bd R Ring ¬ X Unit R X 1 ˙
8 1 3 irrednu X I ¬ X Unit R
9 7 8 impel R Ring X I X 1 ˙