Metamath Proof Explorer


Theorem irredneg

Description: The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredneg.n N = inv g R
Assertion irredneg R Ring X I N X I

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredneg.n N = inv g R
3 eqid Base R = Base R
4 eqid R = R
5 eqid 1 R = 1 R
6 simpl R Ring X I R Ring
7 1 3 irredcl X I X Base R
8 7 adantl R Ring X I X Base R
9 3 4 5 2 6 8 rngnegr R Ring X I X R N 1 R = N X
10 eqid Unit R = Unit R
11 10 5 1unit R Ring 1 R Unit R
12 10 2 unitnegcl R Ring 1 R Unit R N 1 R Unit R
13 11 12 mpdan R Ring N 1 R Unit R
14 13 adantr R Ring X I N 1 R Unit R
15 1 10 4 irredrmul R Ring X I N 1 R Unit R X R N 1 R I
16 14 15 mpd3an3 R Ring X I X R N 1 R I
17 9 16 eqeltrrd R Ring X I N X I