Metamath Proof Explorer


Theorem irrednegb

Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I = Irred R
irredneg.n N = inv g R
irrednegb.b B = Base R
Assertion irrednegb R Ring X B X I N X I

Proof

Step Hyp Ref Expression
1 irredn0.i I = Irred R
2 irredneg.n N = inv g R
3 irrednegb.b B = Base R
4 1 2 irredneg R Ring X I N X I
5 4 adantlr R Ring X B X I N X I
6 ringgrp R Ring R Grp
7 3 2 grpinvinv R Grp X B N N X = X
8 6 7 sylan R Ring X B N N X = X
9 8 adantr R Ring X B N X I N N X = X
10 1 2 irredneg R Ring N X I N N X I
11 10 adantlr R Ring X B N X I N N X I
12 9 11 eqeltrrd R Ring X B N X I X I
13 5 12 impbida R Ring X B X I N X I