Metamath Proof Explorer


Theorem irrednzr

Description: A ring with an irreducible element cannot be the zero ring. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses irrednzr.1 I = Irred R
irrednzr.2 φ R Ring
irrednzr.3 φ X I
Assertion irrednzr φ R NzRing

Proof

Step Hyp Ref Expression
1 irrednzr.1 I = Irred R
2 irrednzr.2 φ R Ring
3 irrednzr.3 φ X I
4 eqid Base R = Base R
5 1 4 irredcl X I X Base R
6 3 5 syl φ X Base R
7 eqid 0 R = 0 R
8 1 7 irredn0 R Ring X I X 0 R
9 2 3 8 syl2anc φ X 0 R
10 6 9 eldifsnd φ X Base R 0 R
11 7 4 ringelnzr R Ring X Base R 0 R R NzRing
12 2 10 11 syl2anc φ R NzRing