Step |
Hyp |
Ref |
Expression |
1 |
|
irredn0.i |
|
2 |
|
irredrmul.u |
|
3 |
|
irredrmul.t |
|
4 |
|
simp2 |
|
5 |
|
simp1 |
|
6 |
|
simp3 |
|
7 |
|
eqid |
|
8 |
2 7
|
unitdvcl |
|
9 |
8
|
3com23 |
|
10 |
9
|
3expia |
|
11 |
5 6 10
|
syl2anc |
|
12 |
|
eqid |
|
13 |
1 12
|
irredcl |
|
14 |
13
|
3ad2ant2 |
|
15 |
12 2 7 3
|
dvrcan3 |
|
16 |
5 14 6 15
|
syl3anc |
|
17 |
16
|
eleq1d |
|
18 |
11 17
|
sylibd |
|
19 |
5
|
ad2antrr |
|
20 |
|
eldifi |
|
21 |
20
|
ad2antrl |
|
22 |
6
|
ad2antrr |
|
23 |
12 2 7
|
dvrcl |
|
24 |
19 21 22 23
|
syl3anc |
|
25 |
|
eldifn |
|
26 |
25
|
ad2antrl |
|
27 |
2 3
|
unitmulcl |
|
28 |
27
|
3com23 |
|
29 |
28
|
3expia |
|
30 |
19 22 29
|
syl2anc |
|
31 |
12 2 7 3
|
dvrcan1 |
|
32 |
19 21 22 31
|
syl3anc |
|
33 |
32
|
eleq1d |
|
34 |
30 33
|
sylibd |
|
35 |
26 34
|
mtod |
|
36 |
24 35
|
eldifd |
|
37 |
|
simprr |
|
38 |
37
|
oveq1d |
|
39 |
|
eldifi |
|
40 |
39
|
ad2antlr |
|
41 |
12 2 7 3
|
dvrass |
|
42 |
19 40 21 22 41
|
syl13anc |
|
43 |
16
|
ad2antrr |
|
44 |
38 42 43
|
3eqtr3d |
|
45 |
|
oveq2 |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
rspcev |
|
48 |
36 44 47
|
syl2anc |
|
49 |
48
|
rexlimdvaa |
|
50 |
49
|
reximdva |
|
51 |
18 50
|
orim12d |
|
52 |
12 2
|
unitcl |
|
53 |
52
|
3ad2ant3 |
|
54 |
12 3
|
ringcl |
|
55 |
5 14 53 54
|
syl3anc |
|
56 |
|
eqid |
|
57 |
12 2 1 56 3
|
isnirred |
|
58 |
55 57
|
syl |
|
59 |
12 2 1 56 3
|
isnirred |
|
60 |
14 59
|
syl |
|
61 |
51 58 60
|
3imtr4d |
|
62 |
4 61
|
mt4d |
|