Metamath Proof Explorer


Theorem irrmul

Description: The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008)

Ref Expression
Assertion irrmul A B B 0 A B

Proof

Step Hyp Ref Expression
1 eldif A A ¬ A
2 qre B B
3 remulcl A B A B
4 2 3 sylan2 A B A B
5 4 ad2ant2r A ¬ A B B 0 A B
6 qdivcl A B B B 0 A B B
7 6 3expb A B B B 0 A B B
8 7 expcom B B 0 A B A B B
9 8 adantl A B B 0 A B A B B
10 qcn B B
11 recn A A
12 divcan4 A B B 0 A B B = A
13 11 12 syl3an1 A B B 0 A B B = A
14 10 13 syl3an2 A B B 0 A B B = A
15 14 3expb A B B 0 A B B = A
16 15 eleq1d A B B 0 A B B A
17 9 16 sylibd A B B 0 A B A
18 17 con3d A B B 0 ¬ A ¬ A B
19 18 ex A B B 0 ¬ A ¬ A B
20 19 com23 A ¬ A B B 0 ¬ A B
21 20 imp31 A ¬ A B B 0 ¬ A B
22 5 21 jca A ¬ A B B 0 A B ¬ A B
23 22 3impb A ¬ A B B 0 A B ¬ A B
24 1 23 syl3an1b A B B 0 A B ¬ A B
25 eldif A B A B ¬ A B
26 24 25 sylibr A B B 0 A B