Metamath Proof Explorer


Theorem is1stc

Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Hypothesis is1stc.1 X = J
Assertion is1stc J 1 st 𝜔 J Top x X y 𝒫 J y ω z J x z x y 𝒫 z

Proof

Step Hyp Ref Expression
1 is1stc.1 X = J
2 unieq j = J j = J
3 2 1 eqtr4di j = J j = X
4 pweq j = J 𝒫 j = 𝒫 J
5 raleq j = J z j x z x y 𝒫 z z J x z x y 𝒫 z
6 5 anbi2d j = J y ω z j x z x y 𝒫 z y ω z J x z x y 𝒫 z
7 4 6 rexeqbidv j = J y 𝒫 j y ω z j x z x y 𝒫 z y 𝒫 J y ω z J x z x y 𝒫 z
8 3 7 raleqbidv j = J x j y 𝒫 j y ω z j x z x y 𝒫 z x X y 𝒫 J y ω z J x z x y 𝒫 z
9 df-1stc 1 st 𝜔 = j Top | x j y 𝒫 j y ω z j x z x y 𝒫 z
10 8 9 elrab2 J 1 st 𝜔 J Top x X y 𝒫 J y ω z J x z x y 𝒫 z