Metamath Proof Explorer


Theorem isabl

Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011)

Ref Expression
Assertion isabl G Abel G Grp G CMnd

Proof

Step Hyp Ref Expression
1 df-abl Abel = Grp CMnd
2 1 elin2 G Abel G Grp G CMnd