Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
isabl
Next ⟩
ablgrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
isabl
Description:
The predicate "is an Abelian (commutative) group".
(Contributed by
NM
, 17-Oct-2011)
Ref
Expression
Assertion
isabl
⊢
G
∈
Abel
↔
G
∈
Grp
∧
G
∈
CMnd
Proof
Step
Hyp
Ref
Expression
1
df-abl
⊢
Abel
=
Grp
∩
CMnd
2
1
elin2
⊢
G
∈
Abel
↔
G
∈
Grp
∧
G
∈
CMnd