Metamath Proof Explorer


Theorem isabl2

Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses iscmn.b B = Base G
iscmn.p + ˙ = + G
Assertion isabl2 G Abel G Grp x B y B x + ˙ y = y + ˙ x

Proof

Step Hyp Ref Expression
1 iscmn.b B = Base G
2 iscmn.p + ˙ = + G
3 isabl G Abel G Grp G CMnd
4 grpmnd G Grp G Mnd
5 1 2 iscmn G CMnd G Mnd x B y B x + ˙ y = y + ˙ x
6 5 baib G Mnd G CMnd x B y B x + ˙ y = y + ˙ x
7 4 6 syl G Grp G CMnd x B y B x + ˙ y = y + ˙ x
8 7 pm5.32i G Grp G CMnd G Grp x B y B x + ˙ y = y + ˙ x
9 3 8 bitri G Abel G Grp x B y B x + ˙ y = y + ˙ x