Metamath Proof Explorer
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)
|
|
Ref |
Expression |
|
Hypotheses |
isabld.b |
|
|
|
isabld.p |
|
|
|
isabld.g |
|
|
|
isabld.c |
|
|
Assertion |
isabld |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isabld.b |
|
2 |
|
isabld.p |
|
3 |
|
isabld.g |
|
4 |
|
isabld.c |
|
5 |
3
|
grpmndd |
|
6 |
1 2 5 4
|
iscmnd |
|
7 |
|
isabl |
|
8 |
3 6 7
|
sylanbrc |
|