Metamath Proof Explorer


Theorem isabli

Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypotheses isabli.g G Grp
isabli.b B = Base G
isabli.p + ˙ = + G
isabli.c x B y B x + ˙ y = y + ˙ x
Assertion isabli G Abel

Proof

Step Hyp Ref Expression
1 isabli.g G Grp
2 isabli.b B = Base G
3 isabli.p + ˙ = + G
4 isabli.c x B y B x + ˙ y = y + ˙ x
5 4 rgen2 x B y B x + ˙ y = y + ˙ x
6 2 3 isabl2 G Abel G Grp x B y B x + ˙ y = y + ˙ x
7 1 5 6 mpbir2an G Abel