Metamath Proof Explorer


Theorem isabloi

Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses isabli.1 G GrpOp
isabli.2 dom G = X × X
isabli.3 x X y X x G y = y G x
Assertion isabloi G AbelOp

Proof

Step Hyp Ref Expression
1 isabli.1 G GrpOp
2 isabli.2 dom G = X × X
3 isabli.3 x X y X x G y = y G x
4 3 rgen2 x X y X x G y = y G x
5 1 2 grporn X = ran G
6 5 isablo G AbelOp G GrpOp x X y X x G y = y G x
7 1 4 6 mpbir2an G AbelOp