Step |
Hyp |
Ref |
Expression |
1 |
|
isabvd.a |
|
2 |
|
isabvd.b |
|
3 |
|
isabvd.p |
|
4 |
|
isabvd.t |
|
5 |
|
isabvd.z |
|
6 |
|
isabvd.1 |
|
7 |
|
isabvd.2 |
|
8 |
|
isabvd.3 |
|
9 |
|
isabvd.4 |
|
10 |
|
isabvd.5 |
|
11 |
|
isabvd.6 |
|
12 |
2
|
feq2d |
|
13 |
7 12
|
mpbid |
|
14 |
13
|
ffnd |
|
15 |
13
|
ffvelrnda |
|
16 |
|
0le0 |
|
17 |
5
|
fveq2d |
|
18 |
17 8
|
eqtr3d |
|
19 |
16 18
|
breqtrrid |
|
20 |
19
|
adantr |
|
21 |
|
fveq2 |
|
22 |
21
|
breq2d |
|
23 |
20 22
|
syl5ibrcom |
|
24 |
|
simp1 |
|
25 |
|
simp2 |
|
26 |
2
|
3ad2ant1 |
|
27 |
25 26
|
eleqtrrd |
|
28 |
|
simp3 |
|
29 |
5
|
3ad2ant1 |
|
30 |
28 29
|
neeqtrrd |
|
31 |
24 27 30 9
|
syl3anc |
|
32 |
|
0re |
|
33 |
15
|
3adant3 |
|
34 |
|
ltle |
|
35 |
32 33 34
|
sylancr |
|
36 |
31 35
|
mpd |
|
37 |
36
|
3expia |
|
38 |
23 37
|
pm2.61dne |
|
39 |
|
elrege0 |
|
40 |
15 38 39
|
sylanbrc |
|
41 |
40
|
ralrimiva |
|
42 |
|
ffnfv |
|
43 |
14 41 42
|
sylanbrc |
|
44 |
31
|
gt0ne0d |
|
45 |
44
|
3expia |
|
46 |
45
|
necon4d |
|
47 |
18
|
adantr |
|
48 |
|
fveqeq2 |
|
49 |
47 48
|
syl5ibrcom |
|
50 |
46 49
|
impbid |
|
51 |
18
|
3ad2ant1 |
|
52 |
51
|
adantr |
|
53 |
|
oveq1 |
|
54 |
6
|
3ad2ant1 |
|
55 |
|
simp3 |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
56 57 58
|
ringlz |
|
60 |
54 55 59
|
syl2anc |
|
61 |
53 60
|
sylan9eqr |
|
62 |
61
|
fveq2d |
|
63 |
21 51
|
sylan9eqr |
|
64 |
63
|
oveq1d |
|
65 |
13
|
3ad2ant1 |
|
66 |
65 55
|
ffvelrnd |
|
67 |
66
|
recnd |
|
68 |
67
|
adantr |
|
69 |
68
|
mul02d |
|
70 |
64 69
|
eqtrd |
|
71 |
52 62 70
|
3eqtr4d |
|
72 |
51
|
adantr |
|
73 |
|
oveq2 |
|
74 |
|
simp2 |
|
75 |
56 57 58
|
ringrz |
|
76 |
54 74 75
|
syl2anc |
|
77 |
73 76
|
sylan9eqr |
|
78 |
77
|
fveq2d |
|
79 |
|
fveq2 |
|
80 |
79 51
|
sylan9eqr |
|
81 |
80
|
oveq2d |
|
82 |
65 74
|
ffvelrnd |
|
83 |
82
|
recnd |
|
84 |
83
|
adantr |
|
85 |
84
|
mul01d |
|
86 |
81 85
|
eqtrd |
|
87 |
72 78 86
|
3eqtr4d |
|
88 |
|
simpl1 |
|
89 |
88 4
|
syl |
|
90 |
89
|
oveqd |
|
91 |
90
|
fveq2d |
|
92 |
|
simpl2 |
|
93 |
88 2
|
syl |
|
94 |
92 93
|
eleqtrrd |
|
95 |
|
simprl |
|
96 |
88 5
|
syl |
|
97 |
95 96
|
neeqtrrd |
|
98 |
|
simpl3 |
|
99 |
98 93
|
eleqtrrd |
|
100 |
|
simprr |
|
101 |
100 96
|
neeqtrrd |
|
102 |
88 94 97 99 101 10
|
syl122anc |
|
103 |
91 102
|
eqtr3d |
|
104 |
71 87 103
|
pm2.61da2ne |
|
105 |
|
oveq1 |
|
106 |
|
ringgrp |
|
107 |
54 106
|
syl |
|
108 |
|
eqid |
|
109 |
56 108 58
|
grplid |
|
110 |
107 55 109
|
syl2anc |
|
111 |
105 110
|
sylan9eqr |
|
112 |
111
|
fveq2d |
|
113 |
16 63
|
breqtrrid |
|
114 |
66 82
|
addge02d |
|
115 |
114
|
adantr |
|
116 |
113 115
|
mpbid |
|
117 |
112 116
|
eqbrtrd |
|
118 |
|
oveq2 |
|
119 |
56 108 58
|
grprid |
|
120 |
107 74 119
|
syl2anc |
|
121 |
118 120
|
sylan9eqr |
|
122 |
121
|
fveq2d |
|
123 |
16 80
|
breqtrrid |
|
124 |
82 66
|
addge01d |
|
125 |
124
|
adantr |
|
126 |
123 125
|
mpbid |
|
127 |
122 126
|
eqbrtrd |
|
128 |
88 3
|
syl |
|
129 |
128
|
oveqd |
|
130 |
129
|
fveq2d |
|
131 |
88 94 97 99 101 11
|
syl122anc |
|
132 |
130 131
|
eqbrtrrd |
|
133 |
117 127 132
|
pm2.61da2ne |
|
134 |
104 133
|
jca |
|
135 |
134
|
3expia |
|
136 |
135
|
ralrimiv |
|
137 |
50 136
|
jca |
|
138 |
137
|
ralrimiva |
|
139 |
|
eqid |
|
140 |
139 56 108 57 58
|
isabv |
|
141 |
6 140
|
syl |
|
142 |
43 138 141
|
mpbir2and |
|
143 |
142 1
|
eleqtrrd |
|