Metamath Proof Explorer


Theorem isacn

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion isacn X V A W X AC _ A f 𝒫 X A g x A g x f x

Proof

Step Hyp Ref Expression
1 pweq y = X 𝒫 y = 𝒫 X
2 1 difeq1d y = X 𝒫 y = 𝒫 X
3 2 oveq1d y = X 𝒫 y A = 𝒫 X A
4 3 raleqdv y = X f 𝒫 y A g x A g x f x f 𝒫 X A g x A g x f x
5 4 anbi2d y = X A V f 𝒫 y A g x A g x f x A V f 𝒫 X A g x A g x f x
6 df-acn AC _ A = y | A V f 𝒫 y A g x A g x f x
7 5 6 elab2g X V X AC _ A A V f 𝒫 X A g x A g x f x
8 elex A W A V
9 biid A V f 𝒫 X A g x A g x f x A V f 𝒫 X A g x A g x f x
10 9 baib A V A V f 𝒫 X A g x A g x f x f 𝒫 X A g x A g x f x
11 8 10 syl A W A V f 𝒫 X A g x A g x f x f 𝒫 X A g x A g x f x
12 7 11 sylan9bb X V A W X AC _ A f 𝒫 X A g x A g x f x