Metamath Proof Explorer


Theorem isacs3

Description: A closure system is algebraic iff directed unions of closed sets are closed. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion isacs3 C ACS X C Moore X s 𝒫 C toInc s Dirset s C

Proof

Step Hyp Ref Expression
1 isacs3lem C ACS X C Moore X s 𝒫 C toInc s Dirset s C
2 eqid mrCls C = mrCls C
3 2 isacs4lem C Moore X s 𝒫 C toInc s Dirset s C C Moore X t 𝒫 𝒫 X toInc t Dirset mrCls C t = mrCls C t
4 2 isacs4 C ACS X C Moore X t 𝒫 𝒫 X toInc t Dirset mrCls C t = mrCls C t
5 3 4 sylibr C Moore X s 𝒫 C toInc s Dirset s C C ACS X
6 1 5 impbii C ACS X C Moore X s 𝒫 C toInc s Dirset s C