Step |
Hyp |
Ref |
Expression |
1 |
|
acsmre |
|
2 |
|
mresspw |
|
3 |
1 2
|
syl |
|
4 |
3
|
sspwd |
|
5 |
4
|
sselda |
|
6 |
5
|
elpwid |
|
7 |
|
sspwuni |
|
8 |
6 7
|
sylib |
|
9 |
8
|
adantr |
|
10 |
|
elinel1 |
|
11 |
10
|
elpwid |
|
12 |
|
elinel2 |
|
13 |
|
fissuni |
|
14 |
11 12 13
|
syl2anc |
|
15 |
14
|
ad2antll |
|
16 |
1
|
ad3antrrr |
|
17 |
|
eqid |
|
18 |
|
simprr |
|
19 |
|
elinel1 |
|
20 |
19
|
elpwid |
|
21 |
20
|
unissd |
|
22 |
21
|
ad2antrl |
|
23 |
8
|
ad2antrr |
|
24 |
22 23
|
sstrd |
|
25 |
16 17 18 24
|
mrcssd |
|
26 |
|
simpl |
|
27 |
20
|
adantl |
|
28 |
|
elinel2 |
|
29 |
28
|
adantl |
|
30 |
|
ipodrsfi |
|
31 |
26 27 29 30
|
syl3anc |
|
32 |
31
|
adantl |
|
33 |
1
|
ad3antrrr |
|
34 |
|
simprr |
|
35 |
|
elpwi |
|
36 |
35
|
adantl |
|
37 |
36
|
ad2antrr |
|
38 |
|
simprl |
|
39 |
37 38
|
sseldd |
|
40 |
17
|
mrcsscl |
|
41 |
33 34 39 40
|
syl3anc |
|
42 |
|
elssuni |
|
43 |
42
|
ad2antrl |
|
44 |
41 43
|
sstrd |
|
45 |
32 44
|
rexlimddv |
|
46 |
45
|
anassrs |
|
47 |
46
|
adantrr |
|
48 |
47
|
adantlrr |
|
49 |
25 48
|
sstrd |
|
50 |
15 49
|
rexlimddv |
|
51 |
50
|
anassrs |
|
52 |
51
|
ralrimiva |
|
53 |
17
|
acsfiel |
|
54 |
53
|
ad2antrr |
|
55 |
9 52 54
|
mpbir2and |
|
56 |
55
|
ex |
|
57 |
56
|
ralrimiva |
|
58 |
1 57
|
jca |
|