Metamath Proof Explorer


Theorem isacs4

Description: A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis acsdrscl.f F = mrCls C
Assertion isacs4 C ACS X C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s

Proof

Step Hyp Ref Expression
1 acsdrscl.f F = mrCls C
2 isacs3lem C ACS X C Moore X t 𝒫 C toInc t Dirset t C
3 1 isacs4lem C Moore X t 𝒫 C toInc t Dirset t C C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s
4 2 3 syl C ACS X C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s
5 1 isacs5lem C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s C Moore X t 𝒫 X F t = F 𝒫 t Fin
6 1 isacs5 C ACS X C Moore X t 𝒫 X F t = F 𝒫 t Fin
7 5 6 sylibr C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s C ACS X
8 4 7 impbii C ACS X C Moore X s 𝒫 𝒫 X toInc s Dirset F s = F s