Step |
Hyp |
Ref |
Expression |
1 |
|
acsdrscl.f |
|
2 |
|
simpll |
|
3 |
|
elpwi |
|
4 |
3
|
ad2antrl |
|
5 |
1
|
mrcuni |
|
6 |
2 4 5
|
syl2anc |
|
7 |
1
|
mrcf |
|
8 |
7
|
ffnd |
|
9 |
8
|
adantr |
|
10 |
|
simpll |
|
11 |
|
simprl |
|
12 |
|
simprr |
|
13 |
10 1 11 12
|
mrcssd |
|
14 |
|
simprr |
|
15 |
3
|
ad2antrl |
|
16 |
1
|
fvexi |
|
17 |
16
|
imaex |
|
18 |
17
|
a1i |
|
19 |
9 13 14 15 18
|
ipodrsima |
|
20 |
19
|
adantlr |
|
21 |
|
fveq2 |
|
22 |
21
|
eleq1d |
|
23 |
|
unieq |
|
24 |
23
|
eleq1d |
|
25 |
22 24
|
imbi12d |
|
26 |
|
simplr |
|
27 |
|
imassrn |
|
28 |
7
|
frnd |
|
29 |
27 28
|
sstrid |
|
30 |
17
|
elpw |
|
31 |
29 30
|
sylibr |
|
32 |
31
|
ad2antrr |
|
33 |
25 26 32
|
rspcdva |
|
34 |
20 33
|
mpd |
|
35 |
1
|
mrcid |
|
36 |
2 34 35
|
syl2anc |
|
37 |
6 36
|
eqtrd |
|
38 |
37
|
exp32 |
|
39 |
38
|
ralrimiv |
|
40 |
39
|
ex |
|
41 |
40
|
imdistani |
|