Metamath Proof Explorer


Theorem isacs5

Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis acsdrscl.f F = mrCls C
Assertion isacs5 C ACS X C Moore X s 𝒫 X F s = F 𝒫 s Fin

Proof

Step Hyp Ref Expression
1 acsdrscl.f F = mrCls C
2 isacs3lem C ACS X C Moore X s 𝒫 C toInc s Dirset s C
3 1 isacs4lem C Moore X s 𝒫 C toInc s Dirset s C C Moore X t 𝒫 𝒫 X toInc t Dirset F t = F t
4 1 isacs5lem C Moore X t 𝒫 𝒫 X toInc t Dirset F t = F t C Moore X s 𝒫 X F s = F 𝒫 s Fin
5 2 3 4 3syl C ACS X C Moore X s 𝒫 X F s = F 𝒫 s Fin
6 simpl C Moore X s 𝒫 X F s = F 𝒫 s Fin C Moore X
7 elpwi s 𝒫 X s X
8 1 mrcidb2 C Moore X s X s C F s s
9 7 8 sylan2 C Moore X s 𝒫 X s C F s s
10 9 adantr C Moore X s 𝒫 X F s = F 𝒫 s Fin s C F s s
11 simpr C Moore X s 𝒫 X F s = F 𝒫 s Fin F s = F 𝒫 s Fin
12 1 mrcf C Moore X F : 𝒫 X C
13 ffun F : 𝒫 X C Fun F
14 funiunfv Fun F t 𝒫 s Fin F t = F 𝒫 s Fin
15 12 13 14 3syl C Moore X t 𝒫 s Fin F t = F 𝒫 s Fin
16 15 ad2antrr C Moore X s 𝒫 X F s = F 𝒫 s Fin t 𝒫 s Fin F t = F 𝒫 s Fin
17 11 16 eqtr4d C Moore X s 𝒫 X F s = F 𝒫 s Fin F s = t 𝒫 s Fin F t
18 17 sseq1d C Moore X s 𝒫 X F s = F 𝒫 s Fin F s s t 𝒫 s Fin F t s
19 iunss t 𝒫 s Fin F t s t 𝒫 s Fin F t s
20 18 19 bitrdi C Moore X s 𝒫 X F s = F 𝒫 s Fin F s s t 𝒫 s Fin F t s
21 10 20 bitrd C Moore X s 𝒫 X F s = F 𝒫 s Fin s C t 𝒫 s Fin F t s
22 21 ex C Moore X s 𝒫 X F s = F 𝒫 s Fin s C t 𝒫 s Fin F t s
23 22 ralimdva C Moore X s 𝒫 X F s = F 𝒫 s Fin s 𝒫 X s C t 𝒫 s Fin F t s
24 23 imp C Moore X s 𝒫 X F s = F 𝒫 s Fin s 𝒫 X s C t 𝒫 s Fin F t s
25 1 isacs2 C ACS X C Moore X s 𝒫 X s C t 𝒫 s Fin F t s
26 6 24 25 sylanbrc C Moore X s 𝒫 X F s = F 𝒫 s Fin C ACS X
27 5 26 impbii C ACS X C Moore X s 𝒫 X F s = F 𝒫 s Fin