| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsdrscl.f |  | 
						
							| 2 |  | unifpw |  | 
						
							| 3 | 2 | fveq2i |  | 
						
							| 4 |  | vex |  | 
						
							| 5 |  | fpwipodrs |  | 
						
							| 6 | 4 5 | mp1i |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 | eleq1d |  | 
						
							| 9 |  | unieq |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | imaeq2 |  | 
						
							| 12 | 11 | unieqd |  | 
						
							| 13 | 10 12 | eqeq12d |  | 
						
							| 14 | 8 13 | imbi12d |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 |  | inss1 |  | 
						
							| 17 |  | elpwi |  | 
						
							| 18 | 17 | sspwd |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 16 19 | sstrid |  | 
						
							| 21 |  | vpwex |  | 
						
							| 22 | 21 | inex1 |  | 
						
							| 23 | 22 | elpw |  | 
						
							| 24 | 20 23 | sylibr |  | 
						
							| 25 | 24 | adantlr |  | 
						
							| 26 | 14 15 25 | rspcdva |  | 
						
							| 27 | 6 26 | mpd |  | 
						
							| 28 | 3 27 | eqtr3id |  | 
						
							| 29 | 28 | ralrimiva |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 30 | imdistani |  |