Metamath Proof Explorer


Theorem isarep2

Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex . (Contributed by NM, 26-Oct-2006)

Ref Expression
Hypotheses isarep2.1 A V
isarep2.2 x A y z φ z y φ y = z
Assertion isarep2 w w = x y | φ A

Proof

Step Hyp Ref Expression
1 isarep2.1 A V
2 isarep2.2 x A y z φ z y φ y = z
3 resima x y | φ A A = x y | φ A
4 resopab x y | φ A = x y | x A φ
5 4 imaeq1i x y | φ A A = x y | x A φ A
6 3 5 eqtr3i x y | φ A = x y | x A φ A
7 funopab Fun x y | x A φ x * y x A φ
8 2 rspec x A y z φ z y φ y = z
9 nfv z φ
10 9 mo3 * y φ y z φ z y φ y = z
11 8 10 sylibr x A * y φ
12 moanimv * y x A φ x A * y φ
13 11 12 mpbir * y x A φ
14 7 13 mpgbir Fun x y | x A φ
15 1 funimaex Fun x y | x A φ x y | x A φ A V
16 14 15 ax-mp x y | x A φ A V
17 6 16 eqeltri x y | φ A V
18 17 isseti w w = x y | φ A