Step |
Hyp |
Ref |
Expression |
1 |
|
isassa.v |
|
2 |
|
isassa.f |
|
3 |
|
isassa.b |
|
4 |
|
isassa.s |
|
5 |
|
isassa.t |
|
6 |
|
fvexd |
|
7 |
|
fveq2 |
|
8 |
7 2
|
eqtr4di |
|
9 |
|
simpr |
|
10 |
9
|
eleq1d |
|
11 |
9
|
fveq2d |
|
12 |
11 3
|
eqtr4di |
|
13 |
|
fveq2 |
|
14 |
13 1
|
eqtr4di |
|
15 |
|
fvexd |
|
16 |
|
fvexd |
|
17 |
|
simpr |
|
18 |
|
fveq2 |
|
19 |
18
|
ad2antrr |
|
20 |
19 5
|
eqtr4di |
|
21 |
17 20
|
eqtrd |
|
22 |
|
simplr |
|
23 |
|
fveq2 |
|
24 |
23
|
ad2antrr |
|
25 |
24 4
|
eqtr4di |
|
26 |
22 25
|
eqtrd |
|
27 |
26
|
oveqd |
|
28 |
|
eqidd |
|
29 |
21 27 28
|
oveq123d |
|
30 |
|
eqidd |
|
31 |
21
|
oveqd |
|
32 |
26 30 31
|
oveq123d |
|
33 |
29 32
|
eqeq12d |
|
34 |
|
eqidd |
|
35 |
26
|
oveqd |
|
36 |
21 34 35
|
oveq123d |
|
37 |
36 32
|
eqeq12d |
|
38 |
33 37
|
anbi12d |
|
39 |
16 38
|
sbcied |
|
40 |
15 39
|
sbcied |
|
41 |
14 40
|
raleqbidv |
|
42 |
14 41
|
raleqbidv |
|
43 |
42
|
adantr |
|
44 |
12 43
|
raleqbidv |
|
45 |
10 44
|
anbi12d |
|
46 |
6 8 45
|
sbcied2 |
|
47 |
|
df-assa |
|
48 |
46 47
|
elrab2 |
|
49 |
|
anass |
|
50 |
|
elin |
|
51 |
50
|
anbi1i |
|
52 |
|
df-3an |
|
53 |
51 52
|
bitr4i |
|
54 |
53
|
anbi1i |
|
55 |
48 49 54
|
3bitr2i |
|