Metamath Proof Explorer


Theorem isat

Description: The predicate "is an atom". ( ela analog.) (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses isatom.b B = Base K
isatom.z 0 ˙ = 0. K
isatom.c C = K
isatom.a A = Atoms K
Assertion isat K D P A P B 0 ˙ C P

Proof

Step Hyp Ref Expression
1 isatom.b B = Base K
2 isatom.z 0 ˙ = 0. K
3 isatom.c C = K
4 isatom.a A = Atoms K
5 1 2 3 4 pats K D A = x B | 0 ˙ C x
6 5 eleq2d K D P A P x B | 0 ˙ C x
7 breq2 x = P 0 ˙ C x 0 ˙ C P
8 7 elrab P x B | 0 ˙ C x P B 0 ˙ C P
9 6 8 bitrdi K D P A P B 0 ˙ C P