Metamath Proof Explorer


Theorem isatl

Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)

Ref Expression
Hypotheses isatlat.b B = Base K
isatlat.g G = glb K
isatlat.l ˙ = K
isatlat.z 0 ˙ = 0. K
isatlat.a A = Atoms K
Assertion isatl K AtLat K Lat B dom G x B x 0 ˙ y A y ˙ x

Proof

Step Hyp Ref Expression
1 isatlat.b B = Base K
2 isatlat.g G = glb K
3 isatlat.l ˙ = K
4 isatlat.z 0 ˙ = 0. K
5 isatlat.a A = Atoms K
6 fveq2 k = K Base k = Base K
7 6 1 eqtr4di k = K Base k = B
8 fveq2 k = K glb k = glb K
9 8 2 eqtr4di k = K glb k = G
10 9 dmeqd k = K dom glb k = dom G
11 7 10 eleq12d k = K Base k dom glb k B dom G
12 fveq2 k = K 0. k = 0. K
13 12 4 eqtr4di k = K 0. k = 0 ˙
14 13 neeq2d k = K x 0. k x 0 ˙
15 fveq2 k = K Atoms k = Atoms K
16 15 5 eqtr4di k = K Atoms k = A
17 fveq2 k = K k = K
18 17 3 eqtr4di k = K k = ˙
19 18 breqd k = K y k x y ˙ x
20 16 19 rexeqbidv k = K y Atoms k y k x y A y ˙ x
21 14 20 imbi12d k = K x 0. k y Atoms k y k x x 0 ˙ y A y ˙ x
22 7 21 raleqbidv k = K x Base k x 0. k y Atoms k y k x x B x 0 ˙ y A y ˙ x
23 11 22 anbi12d k = K Base k dom glb k x Base k x 0. k y Atoms k y k x B dom G x B x 0 ˙ y A y ˙ x
24 df-atl AtLat = k Lat | Base k dom glb k x Base k x 0. k y Atoms k y k x
25 23 24 elrab2 K AtLat K Lat B dom G x B x 0 ˙ y A y ˙ x
26 3anass K Lat B dom G x B x 0 ˙ y A y ˙ x K Lat B dom G x B x 0 ˙ y A y ˙ x
27 25 26 bitr4i K AtLat K Lat B dom G x B x 0 ˙ y A y ˙ x