Metamath Proof Explorer


Theorem isausgr

Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017)

Ref Expression
Hypothesis ausgr.1 G = v e | e x 𝒫 v | x = 2
Assertion isausgr V W E X V G E E x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 ausgr.1 G = v e | e x 𝒫 v | x = 2
2 simpr v = V e = E e = E
3 pweq v = V 𝒫 v = 𝒫 V
4 3 adantr v = V e = E 𝒫 v = 𝒫 V
5 4 rabeqdv v = V e = E x 𝒫 v | x = 2 = x 𝒫 V | x = 2
6 2 5 sseq12d v = V e = E e x 𝒫 v | x = 2 E x 𝒫 V | x = 2
7 6 1 brabga V W E X V G E E x 𝒫 V | x = 2