Metamath Proof Explorer


Theorem isblo2

Description: The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3 N = U normOp OLD W
bloval.4 L = U LnOp W
bloval.5 B = U BLnOp W
Assertion isblo2 U NrmCVec W NrmCVec T B T L N T

Proof

Step Hyp Ref Expression
1 bloval.3 N = U normOp OLD W
2 bloval.4 L = U LnOp W
3 bloval.5 B = U BLnOp W
4 1 2 3 isblo U NrmCVec W NrmCVec T B T L N T < +∞
5 eqid BaseSet U = BaseSet U
6 eqid BaseSet W = BaseSet W
7 5 6 2 lnof U NrmCVec W NrmCVec T L T : BaseSet U BaseSet W
8 5 6 1 nmoreltpnf U NrmCVec W NrmCVec T : BaseSet U BaseSet W N T N T < +∞
9 7 8 syld3an3 U NrmCVec W NrmCVec T L N T N T < +∞
10 9 3expa U NrmCVec W NrmCVec T L N T N T < +∞
11 10 pm5.32da U NrmCVec W NrmCVec T L N T T L N T < +∞
12 4 11 bitr4d U NrmCVec W NrmCVec T B T L N T