Metamath Proof Explorer


Theorem isbnd2

Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion isbnd2 M Bnd X X M ∞Met X x X r + X = x ball M r

Proof

Step Hyp Ref Expression
1 isbndx M Bnd X M ∞Met X x X r + X = x ball M r
2 1 anbi1i M Bnd X X M ∞Met X x X r + X = x ball M r X
3 anass M ∞Met X x X r + X = x ball M r X M ∞Met X x X r + X = x ball M r X
4 r19.2z X x X r + X = x ball M r x X r + X = x ball M r
5 4 ancoms x X r + X = x ball M r X x X r + X = x ball M r
6 oveq1 x = y x ball M r = y ball M r
7 6 eqeq2d x = y X = x ball M r X = y ball M r
8 oveq2 r = s y ball M r = y ball M s
9 8 eqeq2d r = s X = y ball M r X = y ball M s
10 7 9 cbvrex2vw x X r + X = x ball M r y X s + X = y ball M s
11 2rp 2 +
12 rpmulcl 2 + s + 2 s +
13 11 12 mpan s + 2 s +
14 13 ad2antll M ∞Met X y X s + 2 s +
15 14 ad2antrr M ∞Met X y X s + x X X = y ball M s 2 s +
16 rpcn s + s
17 2cnd s + 2
18 2ne0 2 0
19 18 a1i s + 2 0
20 divcan3 s 2 2 0 2 s 2 = s
21 20 eqcomd s 2 2 0 s = 2 s 2
22 16 17 19 21 syl3anc s + s = 2 s 2
23 22 oveq2d s + y ball M s = y ball M 2 s 2
24 23 eqeq2d s + X = y ball M s X = y ball M 2 s 2
25 24 biimpd s + X = y ball M s X = y ball M 2 s 2
26 25 ad2antll M ∞Met X y X s + X = y ball M s X = y ball M 2 s 2
27 26 adantr M ∞Met X y X s + x X X = y ball M s X = y ball M 2 s 2
28 27 imp M ∞Met X y X s + x X X = y ball M s X = y ball M 2 s 2
29 simpr M ∞Met X y X s + x X X = y ball M 2 s 2 X = y ball M 2 s 2
30 eleq2 X = y ball M 2 s 2 x X x y ball M 2 s 2
31 30 biimpac x X X = y ball M 2 s 2 x y ball M 2 s 2
32 2re 2
33 rpre s + s
34 remulcl 2 s 2 s
35 32 33 34 sylancr s + 2 s
36 blhalf M ∞Met X y X 2 s x y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
37 36 expr M ∞Met X y X 2 s x y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
38 35 37 sylan2 M ∞Met X y X s + x y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
39 38 anasss M ∞Met X y X s + x y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
40 39 imp M ∞Met X y X s + x y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
41 31 40 sylan2 M ∞Met X y X s + x X X = y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
42 41 anassrs M ∞Met X y X s + x X X = y ball M 2 s 2 y ball M 2 s 2 x ball M 2 s
43 29 42 eqsstrd M ∞Met X y X s + x X X = y ball M 2 s 2 X x ball M 2 s
44 28 43 syldan M ∞Met X y X s + x X X = y ball M s X x ball M 2 s
45 13 adantl y X s + 2 s +
46 rpxr 2 s + 2 s *
47 blssm M ∞Met X x X 2 s * x ball M 2 s X
48 46 47 syl3an3 M ∞Met X x X 2 s + x ball M 2 s X
49 48 3expa M ∞Met X x X 2 s + x ball M 2 s X
50 45 49 sylan2 M ∞Met X x X y X s + x ball M 2 s X
51 50 an32s M ∞Met X y X s + x X x ball M 2 s X
52 51 adantr M ∞Met X y X s + x X X = y ball M s x ball M 2 s X
53 44 52 eqssd M ∞Met X y X s + x X X = y ball M s X = x ball M 2 s
54 oveq2 r = 2 s x ball M r = x ball M 2 s
55 54 rspceeqv 2 s + X = x ball M 2 s r + X = x ball M r
56 15 53 55 syl2anc M ∞Met X y X s + x X X = y ball M s r + X = x ball M r
57 56 ex M ∞Met X y X s + x X X = y ball M s r + X = x ball M r
58 57 ralrimdva M ∞Met X y X s + X = y ball M s x X r + X = x ball M r
59 58 rexlimdvva M ∞Met X y X s + X = y ball M s x X r + X = x ball M r
60 10 59 syl5bi M ∞Met X x X r + X = x ball M r x X r + X = x ball M r
61 rexn0 x X r + X = x ball M r X
62 61 a1i M ∞Met X x X r + X = x ball M r X
63 60 62 jcad M ∞Met X x X r + X = x ball M r x X r + X = x ball M r X
64 5 63 impbid2 M ∞Met X x X r + X = x ball M r X x X r + X = x ball M r
65 64 pm5.32i M ∞Met X x X r + X = x ball M r X M ∞Met X x X r + X = x ball M r
66 2 3 65 3bitri M Bnd X X M ∞Met X x X r + X = x ball M r