Metamath Proof Explorer


Theorem iscard3

Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion iscard3 card A = A A ω ran

Proof

Step Hyp Ref Expression
1 cardon card A On
2 eleq1 card A = A card A On A On
3 1 2 mpbii card A = A A On
4 eloni A On Ord A
5 3 4 syl card A = A Ord A
6 ordom Ord ω
7 ordtri2or Ord A Ord ω A ω ω A
8 5 6 7 sylancl card A = A A ω ω A
9 8 ord card A = A ¬ A ω ω A
10 isinfcard ω A card A = A A ran
11 10 biimpi ω A card A = A A ran
12 11 expcom card A = A ω A A ran
13 9 12 syld card A = A ¬ A ω A ran
14 13 orrd card A = A A ω A ran
15 cardnn A ω card A = A
16 10 bicomi A ran ω A card A = A
17 16 simprbi A ran card A = A
18 15 17 jaoi A ω A ran card A = A
19 14 18 impbii card A = A A ω A ran
20 elun A ω ran A ω A ran
21 19 20 bitr4i card A = A A ω ran