Step |
Hyp |
Ref |
Expression |
1 |
|
iscat.b |
|
2 |
|
iscat.h |
|
3 |
|
iscat.o |
|
4 |
|
fvexd |
|
5 |
|
fveq2 |
|
6 |
5 1
|
eqtr4di |
|
7 |
|
fvexd |
|
8 |
|
simpl |
|
9 |
8
|
fveq2d |
|
10 |
9 2
|
eqtr4di |
|
11 |
|
fvexd |
|
12 |
|
simpll |
|
13 |
12
|
fveq2d |
|
14 |
13 3
|
eqtr4di |
|
15 |
|
simpllr |
|
16 |
|
simplr |
|
17 |
16
|
oveqd |
|
18 |
16
|
oveqd |
|
19 |
|
simpr |
|
20 |
19
|
oveqd |
|
21 |
20
|
oveqd |
|
22 |
21
|
eqeq1d |
|
23 |
18 22
|
raleqbidv |
|
24 |
16
|
oveqd |
|
25 |
19
|
oveqd |
|
26 |
25
|
oveqd |
|
27 |
26
|
eqeq1d |
|
28 |
24 27
|
raleqbidv |
|
29 |
23 28
|
anbi12d |
|
30 |
15 29
|
raleqbidv |
|
31 |
17 30
|
rexeqbidv |
|
32 |
16
|
oveqd |
|
33 |
19
|
oveqd |
|
34 |
33
|
oveqd |
|
35 |
16
|
oveqd |
|
36 |
34 35
|
eleq12d |
|
37 |
16
|
oveqd |
|
38 |
19
|
oveqd |
|
39 |
19
|
oveqd |
|
40 |
39
|
oveqd |
|
41 |
|
eqidd |
|
42 |
38 40 41
|
oveq123d |
|
43 |
19
|
oveqd |
|
44 |
|
eqidd |
|
45 |
43 44 34
|
oveq123d |
|
46 |
42 45
|
eqeq12d |
|
47 |
37 46
|
raleqbidv |
|
48 |
15 47
|
raleqbidv |
|
49 |
36 48
|
anbi12d |
|
50 |
32 49
|
raleqbidv |
|
51 |
24 50
|
raleqbidv |
|
52 |
15 51
|
raleqbidv |
|
53 |
15 52
|
raleqbidv |
|
54 |
31 53
|
anbi12d |
|
55 |
15 54
|
raleqbidv |
|
56 |
11 14 55
|
sbcied2 |
|
57 |
7 10 56
|
sbcied2 |
|
58 |
4 6 57
|
sbcied2 |
|
59 |
|
df-cat |
|
60 |
58 59
|
elab2g |
|