| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscat.b |
|
| 2 |
|
iscat.h |
|
| 3 |
|
iscat.o |
|
| 4 |
|
fvexd |
|
| 5 |
|
fveq2 |
|
| 6 |
5 1
|
eqtr4di |
|
| 7 |
|
fvexd |
|
| 8 |
|
simpl |
|
| 9 |
8
|
fveq2d |
|
| 10 |
9 2
|
eqtr4di |
|
| 11 |
|
fvexd |
|
| 12 |
|
simpll |
|
| 13 |
12
|
fveq2d |
|
| 14 |
13 3
|
eqtr4di |
|
| 15 |
|
simpllr |
|
| 16 |
|
simplr |
|
| 17 |
16
|
oveqd |
|
| 18 |
16
|
oveqd |
|
| 19 |
|
simpr |
|
| 20 |
19
|
oveqd |
|
| 21 |
20
|
oveqd |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
18 22
|
raleqbidv |
|
| 24 |
16
|
oveqd |
|
| 25 |
19
|
oveqd |
|
| 26 |
25
|
oveqd |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
24 27
|
raleqbidv |
|
| 29 |
23 28
|
anbi12d |
|
| 30 |
15 29
|
raleqbidv |
|
| 31 |
17 30
|
rexeqbidv |
|
| 32 |
16
|
oveqd |
|
| 33 |
19
|
oveqd |
|
| 34 |
33
|
oveqd |
|
| 35 |
16
|
oveqd |
|
| 36 |
34 35
|
eleq12d |
|
| 37 |
16
|
oveqd |
|
| 38 |
19
|
oveqd |
|
| 39 |
19
|
oveqd |
|
| 40 |
39
|
oveqd |
|
| 41 |
|
eqidd |
|
| 42 |
38 40 41
|
oveq123d |
|
| 43 |
19
|
oveqd |
|
| 44 |
|
eqidd |
|
| 45 |
43 44 34
|
oveq123d |
|
| 46 |
42 45
|
eqeq12d |
|
| 47 |
37 46
|
raleqbidv |
|
| 48 |
15 47
|
raleqbidv |
|
| 49 |
36 48
|
anbi12d |
|
| 50 |
32 49
|
raleqbidv |
|
| 51 |
24 50
|
raleqbidv |
|
| 52 |
15 51
|
raleqbidv |
|
| 53 |
15 52
|
raleqbidv |
|
| 54 |
31 53
|
anbi12d |
|
| 55 |
15 54
|
raleqbidv |
|
| 56 |
11 14 55
|
sbcied2 |
|
| 57 |
7 10 56
|
sbcied2 |
|
| 58 |
4 6 57
|
sbcied2 |
|
| 59 |
|
df-cat |
|
| 60 |
58 59
|
elab2g |
|