Step |
Hyp |
Ref |
Expression |
1 |
|
iscatd.b |
|
2 |
|
iscatd.h |
|
3 |
|
iscatd.o |
|
4 |
|
iscatd.c |
|
5 |
|
iscatd.1 |
|
6 |
|
iscatd.2 |
|
7 |
|
iscatd.3 |
|
8 |
|
iscatd.4 |
|
9 |
|
iscatd.5 |
|
10 |
6
|
3exp2 |
|
11 |
10
|
imp31 |
|
12 |
11
|
ralrimiv |
|
13 |
7
|
3exp2 |
|
14 |
13
|
imp31 |
|
15 |
14
|
ralrimiv |
|
16 |
12 15
|
jca |
|
17 |
16
|
ralrimiva |
|
18 |
|
oveq1 |
|
19 |
18
|
eqeq1d |
|
20 |
19
|
ralbidv |
|
21 |
|
oveq2 |
|
22 |
21
|
eqeq1d |
|
23 |
22
|
ralbidv |
|
24 |
20 23
|
anbi12d |
|
25 |
24
|
ralbidv |
|
26 |
25
|
rspcev |
|
27 |
5 17 26
|
syl2anc |
|
28 |
8
|
3expia |
|
29 |
28
|
3exp2 |
|
30 |
29
|
imp43 |
|
31 |
9
|
3expa |
|
32 |
31
|
3exp2 |
|
33 |
32
|
imp32 |
|
34 |
33
|
ralrimiv |
|
35 |
34
|
ex |
|
36 |
35
|
expr |
|
37 |
36
|
expd |
|
38 |
37
|
expr |
|
39 |
38
|
imp42 |
|
40 |
39
|
ralrimdva |
|
41 |
30 40
|
jcad |
|
42 |
41
|
ralrimivv |
|
43 |
42
|
ralrimivva |
|
44 |
27 43
|
jca |
|
45 |
44
|
ralrimiva |
|
46 |
2
|
oveqd |
|
47 |
2
|
oveqd |
|
48 |
3
|
oveqd |
|
49 |
48
|
oveqd |
|
50 |
49
|
eqeq1d |
|
51 |
47 50
|
raleqbidv |
|
52 |
2
|
oveqd |
|
53 |
3
|
oveqd |
|
54 |
53
|
oveqd |
|
55 |
54
|
eqeq1d |
|
56 |
52 55
|
raleqbidv |
|
57 |
51 56
|
anbi12d |
|
58 |
1 57
|
raleqbidv |
|
59 |
46 58
|
rexeqbidv |
|
60 |
2
|
oveqd |
|
61 |
3
|
oveqd |
|
62 |
61
|
oveqd |
|
63 |
2
|
oveqd |
|
64 |
62 63
|
eleq12d |
|
65 |
2
|
oveqd |
|
66 |
3
|
oveqd |
|
67 |
3
|
oveqd |
|
68 |
67
|
oveqd |
|
69 |
|
eqidd |
|
70 |
66 68 69
|
oveq123d |
|
71 |
3
|
oveqd |
|
72 |
|
eqidd |
|
73 |
71 72 62
|
oveq123d |
|
74 |
70 73
|
eqeq12d |
|
75 |
65 74
|
raleqbidv |
|
76 |
1 75
|
raleqbidv |
|
77 |
64 76
|
anbi12d |
|
78 |
60 77
|
raleqbidv |
|
79 |
52 78
|
raleqbidv |
|
80 |
1 79
|
raleqbidv |
|
81 |
1 80
|
raleqbidv |
|
82 |
59 81
|
anbi12d |
|
83 |
1 82
|
raleqbidv |
|
84 |
45 83
|
mpbid |
|
85 |
|
eqid |
|
86 |
|
eqid |
|
87 |
|
eqid |
|
88 |
85 86 87
|
iscat |
|
89 |
4 88
|
syl |
|
90 |
84 89
|
mpbird |
|