Metamath Proof Explorer


Theorem iscau3

Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses iscau3.2 Z = M
iscau3.3 φ D ∞Met X
iscau3.4 φ M
Assertion iscau3 φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x

Proof

Step Hyp Ref Expression
1 iscau3.2 Z = M
2 iscau3.3 φ D ∞Met X
3 iscau3.4 φ M
4 iscau2 D ∞Met X F Cau D F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x
5 2 4 syl φ F Cau D F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x
6 2 adantr φ F X 𝑝𝑚 D ∞Met X
7 ssid
8 simpr k dom F F k X F k X
9 eleq1 F k = F j F k X F j X
10 eleq1 F k = F m F k X F m X
11 xmetsym D ∞Met X F j X F k X F j D F k = F k D F j
12 11 fveq2d D ∞Met X F j X F k X I F j D F k = I F k D F j
13 xmetsym D ∞Met X F m X F j X F m D F j = F j D F m
14 13 fveq2d D ∞Met X F m X F j X I F m D F j = I F j D F m
15 simp1 D ∞Met X F k X F m X F j X x D ∞Met X
16 simp2l D ∞Met X F k X F m X F j X x F k X
17 simp3l D ∞Met X F k X F m X F j X x F j X
18 xmetcl D ∞Met X F k X F j X F k D F j *
19 15 16 17 18 syl3anc D ∞Met X F k X F m X F j X x F k D F j *
20 simp2r D ∞Met X F k X F m X F j X x F m X
21 xmetcl D ∞Met X F j X F m X F j D F m *
22 15 17 20 21 syl3anc D ∞Met X F k X F m X F j X x F j D F m *
23 simp3r D ∞Met X F k X F m X F j X x x
24 23 rehalfcld D ∞Met X F k X F m X F j X x x 2
25 24 rexrd D ∞Met X F k X F m X F j X x x 2 *
26 xlt2add F k D F j * F j D F m * x 2 * x 2 * F k D F j < x 2 F j D F m < x 2 F k D F j + 𝑒 F j D F m < x 2 + 𝑒 x 2
27 19 22 25 25 26 syl22anc D ∞Met X F k X F m X F j X x F k D F j < x 2 F j D F m < x 2 F k D F j + 𝑒 F j D F m < x 2 + 𝑒 x 2
28 24 24 rexaddd D ∞Met X F k X F m X F j X x x 2 + 𝑒 x 2 = x 2 + x 2
29 23 recnd D ∞Met X F k X F m X F j X x x
30 29 2halvesd D ∞Met X F k X F m X F j X x x 2 + x 2 = x
31 28 30 eqtrd D ∞Met X F k X F m X F j X x x 2 + 𝑒 x 2 = x
32 31 breq2d D ∞Met X F k X F m X F j X x F k D F j + 𝑒 F j D F m < x 2 + 𝑒 x 2 F k D F j + 𝑒 F j D F m < x
33 xmettri D ∞Met X F k X F m X F j X F k D F m F k D F j + 𝑒 F j D F m
34 15 16 20 17 33 syl13anc D ∞Met X F k X F m X F j X x F k D F m F k D F j + 𝑒 F j D F m
35 xmetcl D ∞Met X F k X F m X F k D F m *
36 15 16 20 35 syl3anc D ∞Met X F k X F m X F j X x F k D F m *
37 19 22 xaddcld D ∞Met X F k X F m X F j X x F k D F j + 𝑒 F j D F m *
38 23 rexrd D ∞Met X F k X F m X F j X x x *
39 xrlelttr F k D F m * F k D F j + 𝑒 F j D F m * x * F k D F m F k D F j + 𝑒 F j D F m F k D F j + 𝑒 F j D F m < x F k D F m < x
40 36 37 38 39 syl3anc D ∞Met X F k X F m X F j X x F k D F m F k D F j + 𝑒 F j D F m F k D F j + 𝑒 F j D F m < x F k D F m < x
41 34 40 mpand D ∞Met X F k X F m X F j X x F k D F j + 𝑒 F j D F m < x F k D F m < x
42 32 41 sylbid D ∞Met X F k X F m X F j X x F k D F j + 𝑒 F j D F m < x 2 + 𝑒 x 2 F k D F m < x
43 27 42 syld D ∞Met X F k X F m X F j X x F k D F j < x 2 F j D F m < x 2 F k D F m < x
44 ovex F k D F j V
45 fvi F k D F j V I F k D F j = F k D F j
46 44 45 ax-mp I F k D F j = F k D F j
47 46 breq1i I F k D F j < x 2 F k D F j < x 2
48 ovex F j D F m V
49 fvi F j D F m V I F j D F m = F j D F m
50 48 49 ax-mp I F j D F m = F j D F m
51 50 breq1i I F j D F m < x 2 F j D F m < x 2
52 47 51 anbi12i I F k D F j < x 2 I F j D F m < x 2 F k D F j < x 2 F j D F m < x 2
53 ovex F k D F m V
54 fvi F k D F m V I F k D F m = F k D F m
55 53 54 ax-mp I F k D F m = F k D F m
56 55 breq1i I F k D F m < x F k D F m < x
57 43 52 56 3imtr4g D ∞Met X F k X F m X F j X x I F k D F j < x 2 I F j D F m < x 2 I F k D F m < x
58 7 8 9 10 12 14 57 cau3lem D ∞Met X x + j k j k dom F F k X I F k D F j < x x + j k j k dom F F k X m k I F k D F m < x
59 6 58 syl φ F X 𝑝𝑚 x + j k j k dom F F k X I F k D F j < x x + j k j k dom F F k X m k I F k D F m < x
60 46 breq1i I F k D F j < x F k D F j < x
61 60 anbi2i k dom F F k X I F k D F j < x k dom F F k X F k D F j < x
62 df-3an k dom F F k X F k D F j < x k dom F F k X F k D F j < x
63 61 62 bitr4i k dom F F k X I F k D F j < x k dom F F k X F k D F j < x
64 63 ralbii k j k dom F F k X I F k D F j < x k j k dom F F k X F k D F j < x
65 64 rexbii j k j k dom F F k X I F k D F j < x j k j k dom F F k X F k D F j < x
66 65 ralbii x + j k j k dom F F k X I F k D F j < x x + j k j k dom F F k X F k D F j < x
67 56 ralbii m k I F k D F m < x m k F k D F m < x
68 67 anbi2i k dom F F k X m k I F k D F m < x k dom F F k X m k F k D F m < x
69 df-3an k dom F F k X m k F k D F m < x k dom F F k X m k F k D F m < x
70 68 69 bitr4i k dom F F k X m k I F k D F m < x k dom F F k X m k F k D F m < x
71 70 ralbii k j k dom F F k X m k I F k D F m < x k j k dom F F k X m k F k D F m < x
72 71 rexbii j k j k dom F F k X m k I F k D F m < x j k j k dom F F k X m k F k D F m < x
73 72 ralbii x + j k j k dom F F k X m k I F k D F m < x x + j k j k dom F F k X m k F k D F m < x
74 59 66 73 3bitr3g φ F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x x + j k j k dom F F k X m k F k D F m < x
75 3 adantr φ F X 𝑝𝑚 M
76 1 rexuz3 M j Z k j k dom F F k X m k F k D F m < x j k j k dom F F k X m k F k D F m < x
77 75 76 syl φ F X 𝑝𝑚 j Z k j k dom F F k X m k F k D F m < x j k j k dom F F k X m k F k D F m < x
78 77 ralbidv φ F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x x + j k j k dom F F k X m k F k D F m < x
79 74 78 bitr4d φ F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x x + j Z k j k dom F F k X m k F k D F m < x
80 79 pm5.32da φ F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x
81 5 80 bitrd φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x