Step |
Hyp |
Ref |
Expression |
1 |
|
iscau3.2 |
|
2 |
|
iscau3.3 |
|
3 |
|
iscau3.4 |
|
4 |
|
iscau4.5 |
|
5 |
|
iscau4.6 |
|
6 |
1 2 3
|
iscau3 |
|
7 |
|
simpr |
|
8 |
7 1
|
eleqtrdi |
|
9 |
|
eluzelz |
|
10 |
|
uzid |
|
11 |
8 9 10
|
3syl |
|
12 |
|
fveq2 |
|
13 |
|
fveq2 |
|
14 |
13
|
oveq1d |
|
15 |
14
|
breq1d |
|
16 |
12 15
|
raleqbidv |
|
17 |
16
|
rspcv |
|
18 |
11 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
|
fveq2 |
|
21 |
20
|
oveq2d |
|
22 |
21
|
breq1d |
|
23 |
22
|
cbvralvw |
|
24 |
|
simpr |
|
25 |
24
|
ralimi |
|
26 |
13
|
eleq1d |
|
27 |
26
|
rspcv |
|
28 |
11 25 27
|
syl2im |
|
29 |
28
|
imp |
|
30 |
|
r19.26 |
|
31 |
2
|
ad3antrrr |
|
32 |
|
simplr |
|
33 |
|
simprr |
|
34 |
|
xmetsym |
|
35 |
31 32 33 34
|
syl3anc |
|
36 |
35
|
breq1d |
|
37 |
36
|
biimpd |
|
38 |
37
|
expimpd |
|
39 |
38
|
ralimdv |
|
40 |
30 39
|
syl5bir |
|
41 |
40
|
expd |
|
42 |
41
|
impancom |
|
43 |
29 42
|
mpd |
|
44 |
23 43
|
syl5bi |
|
45 |
19 44
|
syld |
|
46 |
45
|
imdistanda |
|
47 |
|
r19.26 |
|
48 |
|
r19.26 |
|
49 |
46 47 48
|
3imtr4g |
|
50 |
|
df-3an |
|
51 |
50
|
ralbii |
|
52 |
|
df-3an |
|
53 |
52
|
ralbii |
|
54 |
49 51 53
|
3imtr4g |
|
55 |
54
|
reximdva |
|
56 |
55
|
ralimdv |
|
57 |
56
|
anim2d |
|
58 |
6 57
|
sylbid |
|
59 |
|
uzssz |
|
60 |
1 59
|
eqsstri |
|
61 |
|
ssrexv |
|
62 |
60 61
|
ax-mp |
|
63 |
62
|
ralimi |
|
64 |
63
|
anim2i |
|
65 |
|
iscau2 |
|
66 |
64 65
|
syl5ibr |
|
67 |
2 66
|
syl |
|
68 |
58 67
|
impbid |
|
69 |
|
simpl |
|
70 |
1
|
uztrn2 |
|
71 |
69 70
|
jca |
|
72 |
4
|
adantrl |
|
73 |
72
|
eleq1d |
|
74 |
5
|
adantrr |
|
75 |
72 74
|
oveq12d |
|
76 |
75
|
breq1d |
|
77 |
73 76
|
3anbi23d |
|
78 |
71 77
|
sylan2 |
|
79 |
78
|
anassrs |
|
80 |
79
|
ralbidva |
|
81 |
80
|
rexbidva |
|
82 |
81
|
ralbidv |
|
83 |
82
|
anbi2d |
|
84 |
68 83
|
bitrd |
|