Metamath Proof Explorer


Theorem iscau4

Description: Express the property " F is a Cauchy sequence of metric D " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses iscau3.2 Z = M
iscau3.3 φ D ∞Met X
iscau3.4 φ M
iscau4.5 φ k Z F k = A
iscau4.6 φ j Z F j = B
Assertion iscau4 φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F A X A D B < x

Proof

Step Hyp Ref Expression
1 iscau3.2 Z = M
2 iscau3.3 φ D ∞Met X
3 iscau3.4 φ M
4 iscau4.5 φ k Z F k = A
5 iscau4.6 φ j Z F j = B
6 1 2 3 iscau3 φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x
7 simpr φ j Z j Z
8 7 1 eleqtrdi φ j Z j M
9 eluzelz j M j
10 uzid j j j
11 8 9 10 3syl φ j Z j j
12 fveq2 k = j k = j
13 fveq2 k = j F k = F j
14 13 oveq1d k = j F k D F m = F j D F m
15 14 breq1d k = j F k D F m < x F j D F m < x
16 12 15 raleqbidv k = j m k F k D F m < x m j F j D F m < x
17 16 rspcv j j k j m k F k D F m < x m j F j D F m < x
18 11 17 syl φ j Z k j m k F k D F m < x m j F j D F m < x
19 18 adantr φ j Z k j k dom F F k X k j m k F k D F m < x m j F j D F m < x
20 fveq2 m = k F m = F k
21 20 oveq2d m = k F j D F m = F j D F k
22 21 breq1d m = k F j D F m < x F j D F k < x
23 22 cbvralvw m j F j D F m < x k j F j D F k < x
24 simpr k dom F F k X F k X
25 24 ralimi k j k dom F F k X k j F k X
26 13 eleq1d k = j F k X F j X
27 26 rspcv j j k j F k X F j X
28 11 25 27 syl2im φ j Z k j k dom F F k X F j X
29 28 imp φ j Z k j k dom F F k X F j X
30 r19.26 k j k dom F F k X F j D F k < x k j k dom F F k X k j F j D F k < x
31 2 ad3antrrr φ j Z F j X k dom F F k X D ∞Met X
32 simplr φ j Z F j X k dom F F k X F j X
33 simprr φ j Z F j X k dom F F k X F k X
34 xmetsym D ∞Met X F j X F k X F j D F k = F k D F j
35 31 32 33 34 syl3anc φ j Z F j X k dom F F k X F j D F k = F k D F j
36 35 breq1d φ j Z F j X k dom F F k X F j D F k < x F k D F j < x
37 36 biimpd φ j Z F j X k dom F F k X F j D F k < x F k D F j < x
38 37 expimpd φ j Z F j X k dom F F k X F j D F k < x F k D F j < x
39 38 ralimdv φ j Z F j X k j k dom F F k X F j D F k < x k j F k D F j < x
40 30 39 syl5bir φ j Z F j X k j k dom F F k X k j F j D F k < x k j F k D F j < x
41 40 expd φ j Z F j X k j k dom F F k X k j F j D F k < x k j F k D F j < x
42 41 impancom φ j Z k j k dom F F k X F j X k j F j D F k < x k j F k D F j < x
43 29 42 mpd φ j Z k j k dom F F k X k j F j D F k < x k j F k D F j < x
44 23 43 syl5bi φ j Z k j k dom F F k X m j F j D F m < x k j F k D F j < x
45 19 44 syld φ j Z k j k dom F F k X k j m k F k D F m < x k j F k D F j < x
46 45 imdistanda φ j Z k j k dom F F k X k j m k F k D F m < x k j k dom F F k X k j F k D F j < x
47 r19.26 k j k dom F F k X m k F k D F m < x k j k dom F F k X k j m k F k D F m < x
48 r19.26 k j k dom F F k X F k D F j < x k j k dom F F k X k j F k D F j < x
49 46 47 48 3imtr4g φ j Z k j k dom F F k X m k F k D F m < x k j k dom F F k X F k D F j < x
50 df-3an k dom F F k X m k F k D F m < x k dom F F k X m k F k D F m < x
51 50 ralbii k j k dom F F k X m k F k D F m < x k j k dom F F k X m k F k D F m < x
52 df-3an k dom F F k X F k D F j < x k dom F F k X F k D F j < x
53 52 ralbii k j k dom F F k X F k D F j < x k j k dom F F k X F k D F j < x
54 49 51 53 3imtr4g φ j Z k j k dom F F k X m k F k D F m < x k j k dom F F k X F k D F j < x
55 54 reximdva φ j Z k j k dom F F k X m k F k D F m < x j Z k j k dom F F k X F k D F j < x
56 55 ralimdv φ x + j Z k j k dom F F k X m k F k D F m < x x + j Z k j k dom F F k X F k D F j < x
57 56 anim2d φ F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x
58 6 57 sylbid φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x
59 uzssz M
60 1 59 eqsstri Z
61 ssrexv Z j Z k j k dom F F k X F k D F j < x j k j k dom F F k X F k D F j < x
62 60 61 ax-mp j Z k j k dom F F k X F k D F j < x j k j k dom F F k X F k D F j < x
63 62 ralimi x + j Z k j k dom F F k X F k D F j < x x + j k j k dom F F k X F k D F j < x
64 63 anim2i F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x
65 iscau2 D ∞Met X F Cau D F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x
66 64 65 syl5ibr D ∞Met X F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x F Cau D
67 2 66 syl φ F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x F Cau D
68 58 67 impbid φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x
69 simpl j Z k j j Z
70 1 uztrn2 j Z k j k Z
71 69 70 jca j Z k j j Z k Z
72 4 adantrl φ j Z k Z F k = A
73 72 eleq1d φ j Z k Z F k X A X
74 5 adantrr φ j Z k Z F j = B
75 72 74 oveq12d φ j Z k Z F k D F j = A D B
76 75 breq1d φ j Z k Z F k D F j < x A D B < x
77 73 76 3anbi23d φ j Z k Z k dom F F k X F k D F j < x k dom F A X A D B < x
78 71 77 sylan2 φ j Z k j k dom F F k X F k D F j < x k dom F A X A D B < x
79 78 anassrs φ j Z k j k dom F F k X F k D F j < x k dom F A X A D B < x
80 79 ralbidva φ j Z k j k dom F F k X F k D F j < x k j k dom F A X A D B < x
81 80 rexbidva φ j Z k j k dom F F k X F k D F j < x j Z k j k dom F A X A D B < x
82 81 ralbidv φ x + j Z k j k dom F F k X F k D F j < x x + j Z k j k dom F A X A D B < x
83 82 anbi2d φ F X 𝑝𝑚 x + j Z k j k dom F F k X F k D F j < x F X 𝑝𝑚 x + j Z k j k dom F A X A D B < x
84 68 83 bitrd φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F A X A D B < x