Step |
Hyp |
Ref |
Expression |
1 |
|
iscau3.2 |
|
2 |
|
iscau3.3 |
|
3 |
|
iscau3.4 |
|
4 |
|
iscau4.5 |
|
5 |
|
iscau4.6 |
|
6 |
|
iscauf.7 |
|
7 |
|
elfvdm |
|
8 |
2 7
|
syl |
|
9 |
|
cnex |
|
10 |
8 9
|
jctir |
|
11 |
|
uzssz |
|
12 |
|
zsscn |
|
13 |
11 12
|
sstri |
|
14 |
1 13
|
eqsstri |
|
15 |
6 14
|
jctir |
|
16 |
|
elpm2r |
|
17 |
10 15 16
|
syl2anc |
|
18 |
17
|
biantrurd |
|
19 |
2
|
adantr |
|
20 |
5
|
adantrr |
|
21 |
6
|
adantr |
|
22 |
|
simprl |
|
23 |
21 22
|
ffvelrnd |
|
24 |
20 23
|
eqeltrrd |
|
25 |
1
|
uztrn2 |
|
26 |
25 4
|
sylan2 |
|
27 |
|
ffvelrn |
|
28 |
6 25 27
|
syl2an |
|
29 |
26 28
|
eqeltrrd |
|
30 |
|
xmetsym |
|
31 |
19 24 29 30
|
syl3anc |
|
32 |
31
|
breq1d |
|
33 |
|
fdm |
|
34 |
33
|
eleq2d |
|
35 |
34
|
biimpar |
|
36 |
6 25 35
|
syl2an |
|
37 |
36 29
|
jca |
|
38 |
37
|
biantrurd |
|
39 |
|
df-3an |
|
40 |
38 39
|
bitr4di |
|
41 |
32 40
|
bitrd |
|
42 |
41
|
anassrs |
|
43 |
42
|
ralbidva |
|
44 |
43
|
rexbidva |
|
45 |
44
|
ralbidv |
|
46 |
1 2 3 4 5
|
iscau4 |
|
47 |
18 45 46
|
3bitr4rd |
|